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Abstract

Given a motion capture sequence, how to i-
dentify the category of the motion? Clas-
sifying human motions is a critical task in
motion editing and synthesizing, for which
manual labeling is clearly inefficient for large
databases. Here we study the general prob-
lem of time series clustering. We propose a
novel method of clustering time series that
can (a) learn joint temporal dynamics in the
data; (b) handle time lags; and (c) produce
interpretable features. We achieve this by
developing complex-valued linear dynamical
systems (CLDS), which include real-valued
Kalman filters as a special case; our advan-
tage is that the transition matrix is simpler
(just diagonal), and the transmission one eas-
ier to interpret. We then present Complex-
Fit, a novel EM algorithm to learn the pa-
rameters for the general model and its special
case for clustering. Our approach produces
significant improvement in clustering quality,
1.5 to 5 times better than well-known com-
petitors on real motion capture sequences.

1. Introduction

Motion capture is a useful technology for generat-
ing realistic human motions, and is used extensive-
ly in computer games, movies and quality of life re-
search (Lee & Shin, 1999; Safonova et al., 2003; K-
agami et al., 2003). However, automatically analyzing
(e.g. segmentation and labeling) such a large set of
motion sequences is a challenging task. This paper
is motivated by the application of clustering motion
capture sequences (corresponding to different marker
positions), an important step towards understanding
human motion, but our proposed method is a general
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one and applies to other time series as well.

Clustering algorithms often rely on effective features
extracted from data. Some most popular approach-
es include using the dynamic time warping (DTW)
distance among sequences (Gunopulos & Das, 2001),
using Principal Component Analysis (PCA) (Ding &
He, 2004) and using Discrete Fourier Transform (DFT)
coefficients. But unfortunately, directly applying tra-
ditional clustering algorithms to the features may not
lead to appealing results. This is largely due to two
distinct characteristics of time series data, (a) tem-
poral dynamics; and (b) time shifts (lags). Differ-
ing from the conventional view of data as points in
high dimensional space, time sequences encode tem-
poral dynamics along the time ticks. Such dynamics
often imply the grouping of those sequences in many
real cases. For example, walking, running, dancing,
and jumping motions are characterized by particular
movements of human body, which result in different
dynamics among the sequences. Hence by identifying
the evolving temporal components, we can find the
clusters of sequences with similar dynamics. As men-
tioned above, another often overlooked characteristic
is time shift. For example, two walking motions may
start from different footsteps, resulting in a lag among
the sequences. Traditional methods like k-means with
PCA features can not handle such lags in sequences,
yielding poor clustering results. On the other hand,
DTW, while handling lags, misses joint dynamics -
thus sequences having the same underlying process but
slightly different parameters (e.g. walking veering left
vs. walking veering right) will have large DTW dis-
tances.

Hence we want the following main properties in any
clustering algorithm for time series:

P1 It should be able to identify joint dynamics across
the sequences;

P2 It should be able to eliminate lags (time shifts)
across sequences;

P3 The features generated should be interpretable.
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As we show later, our proposed method achieves al-
l of the above characteristics, while other traditional
methods miss out on one or more of these (more in Sec-
tion 5). The main idea is to use complex-valued linear
dynamical system (CLDS), which leads to several ad-
vantages: we can afford to have a diagonal transition
matrix, which is simpler and faster to estimate; the
resulting hidden variables are easy to interpret; and
we meet all the design goals, including lag-invariance.

Specifically, the contributions of this paper are:

1. Design of CLDS : We develop complex-valued lin-
ear dynamical systems (CLDS), which includes
traditional real-valued Kalman Filters as special
cases. We then provide a novel complex valued
EM algorithm, Complex-Fit, to learn the model
parameters from the data.

2. Application to Clustering : We also use a special
formulation of CLDS for time series clustering
by imposing a restricted form of the transition
dynamics corresponding to frequencies, without
losing any expressiveness. Such an approach en-
hances the interpretability as well. Our clustering
method then uses the participation weight (ener-
gy) of the hidden variables as features, thus e-
liminating lags. Hence it satisfies P1, P2 and P3
mentioned before.

3. Validation: Finally, we evaluate our algorithm on
real motion capture data. Our proposed method
is able to achieve best clustering results, compar-
ing against several other popular time series clus-
tering methods.

In addition, our proposed CLDS includes as special
cases several popular, powerful methods like PCA,
DFT and AR.

In the following sections, we will first present sever-
al pieces of the related models and techniques in time
series clustering. We will also briefly introduce com-
plex normal distributions and a few useful properties,
and then present our CLDS and its learning algorithm,
along with its application in time series clustering.

2. Background and Related Work

This section briefly introduces the background and re-
lated work for time-series clustering. Many algorithms
have been proposed for time series classification, in-
cluding decision trees (Rodriguez & Alonso, 2004),
neural networks (Nanopoulos et al., 2001), Bayesian
classifiers, SVM (Wu & Chang, 2004), etc. Among the
most popular features for sequential data are DTW,
PCA, LDS and DFT; we briefly describe these next.

We will elaborate on the shortcomings and relation-
ship of these methods to our proposed method later in
Section 5.

DTW The typical distance function used for clus-
tering is the time warping distance, also known as
Dynamic Time Warping (DTW) (e.g., see the tu-
torial (Gunopulos & Das, 2001)). The linear-time
constrained versions of DTW (Itakura parallelogram,
Sakoe-Chiba band) have been studied in (Keogh, 2002;
Fu et al., 2005). In spite of great progress on speeding
up DTW, it is still expensive to compute (Xi et al.,
2006), its plain version being quadratic on the length
of sequences, and typically can not handle slight vari-
ations in the underlying generative dynamics.

PCA Principal Component Analysis (PCA) is the
textbook method for dimensionality reduction, by
spotting redundancies and (linear) correlations among
the given sequences. Technically, it gives the optimal
low rank approximation for the data matrixX. Singu-
lar value decomposition (SVD) is the typical method
to compute PCA. For a data matrix X (assume X
is zero-centered), SVD computes the decomposition
X = U ·S ·V T where both U and V are orthonormal
matrices, S is a diagonal matrix with singular values
on the diagonal, and U ·S can serve as features. PCA
is particularly effective for Gaussian distributed da-
ta (Tipping & Bishop, 1999). However, often the low
dimensional projections are hard to interpret. More-
over, PCA can not capture time-evolving and time-
shifted patterns (since it is designed to not care about
the ordering of the rows or the columns).

DFT The T -point Discrete Fourier Transform (DFT)
of sequence (x0, . . . , xT−1) is a set of T com-
plex numbers ck, given by the formula ck =∑N−1
t=0 xte

− 2πi
N kt (k = 0, . . . , N − 1) where i =

√
−1

is imaginary unit. The ck numbers are also referred to
as the spectrum of the input sequence. DFT, as well as
wavelet transforms, is powerful in spotting periodici-
ties in a single sequence, with numerous uses in signal,
voice, and image processing. However, by missing out
the dynamics and having a fixed basis of frequencies,
it can not find arbitrary and near-by frequencies.

LDS and Augmented Kalman Filters Linear Dy-
namical Systems (LDS), also known as Kalman filters,
have been used previously to model multi-dimensional
continuous valued time series. There exist method-
s based on Kalman filters for clustering time series
data (Buzan et al., 2004; Li et al., 2010). The classi-
cal Kalman filter assumes the observed data sequences
(xn) are generated from the a series of hidden variables
(zn) with a linear projection matrix C, and the hid-
den variables are evolving over time with linear tran-
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sition matrix A, so that next time tick only depends
on the previous time tick as in Markov chains. All
noises (ω’s and ε’s) arising from the process are mod-
eled as independent Gaussian noises with covariances
Q0, Q and R respectively. Given the observation se-
ries, there exist algorithms for estimating hidden vari-
ables (Kalman, 1960) and EM algorithms for learn-
ing the model parameters (Shumway & Stoffer, 1982;
Ghahramani & Hinton, 1996). Apart from hard-to-
interpret model parameters, LDS can not handle time
lags well (see discussion Section 5). Our approach is
also remotely related to several variations of complex
Kalman filters for signal processing (Took & Mandic,
2009; Douglas, 2009). These approaches are based on
the widely-linear filters, which explicitly regress on the
conjugate of the state variables in addition to the tra-
ditional Kalman filters. The common, main difference
is that they all focus on forecasting while our goal is
time series clustering. Therefore we design the model
very carefully to achieve good clustering (e.g. the use
of diagonal transition matrix).

3. Preliminary: Complex Linear
Gaussian Distributions

This section introduces the basic notations of com-
plex valued normal distribution and its related exten-
sion, linear Gaussian distributions (or linear normal
distributions), which are building blocks of our pro-
posed method. We will give a concise summary of the
joint, the marginal and the posterior distributions as
well. For a full description of the normal distributions
of complex variables, we refer readers to (Goodman,
1963; Andersen et al., 1995).

Definition 1 (Multivariate Complex Normal
Distribution) Let x be a vector of complex ran-
dom variables, with dimensionality of m. x follows a
multivariate complex normal distribution, denoted as
x ∼ CN (µ,H), if its p.d.f is

p(x) = π−m|H|−1 exp(−(x− µ)∗H−1(x− µ))

where H is a positive semi-definite and hermitian ma-
trix (Andersen et al., 1995). The mean and variance
are given by E[x] = µ and V ar(x) = H.

All the following lemmas are heavily used in our
derivation to obtain the EM algorithm for CLDS.

Lemma 1 (Linear Gaussian distributions) If x
and y random vectors from the distributions x ∼
CN (µ,H) and y|x ∼ CN (A · b,V ), it follows that

z =

(
x
y

)
will follow a complex normal distribution

with the mean and covariance given by:

E
(
x
y

)
=

(
µ

A · µ+ b

)
Var

(
x
y

)
=

(
H H ·A∗

A ·H V +A ·H ·A∗
)

Lemma 2 (Marginal distribution) Under the
same assumption as Lemma 1, it follows that

y ∼ CN (A · µ+ b,V +A ·H ·A∗)

Lemma 3 (Posterior distribution) Under the
same assumption as Lemma 1, the posterior distribu-
tion of y|x is complex normal, and its mean µy|x and
covariance matrix Σy|x given by,

µy|x = µ+K · (y − b−A · µ)

Σy|x = (I −K ·A) ·H

where the “gain” matrix K = H ·A∗·(V +A·H ·A∗)−1.

A nice property of complex linear Gaussian distribu-
tion is “rotation invariance”. In the simplest form,
the marginal will remain the same for a family of lin-
ear transformation, i.e. y = ax ∼ P (0, |a|2) iff x ∼
CN (0, 1). In this case, ax and |a|x have the same dis-
tribution.

4. Complex Linear Dynamical Systems

In this section we describe the formulation of complex-
valued linear dynamical systems and its special case for
clustering.

The complex linear dynamical systems (CLDS) is de-
fined with the following equations.

z1 = µ0 +w1

zn+1 = A · zn +wn+1

xn = C · zn + vn

where the noise vectors follow complex normal dis-
tribution. w1 ∼ CN (0,Q0), wi ∼ CN (0,Q), and
vj ∼ CN (0,R). Note that unlike Kalman filters, CLD-
S allows complex values in the parameters, with the re-
striction that Q0, Q and R should be Hermitian and
positive definite. Figure 1 shows the graphical model.
It can be viewed as consecutive linear Gaussian distri-
butions on the hidden variable z’s and observation x.

The problem of learning is to estimate the best fit pa-
rameters θ = {µ0,Q0,A,Q,C,R}, giving the obser-
vation sequence x1 . . .xN . We develop Complex-Fit,
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Figure 1. Graphical Model for CLDS. x are real valued ob-
servations and z are complex hidden variables. Arrows
denote linear Gaussian distributions.

a novel complex valued expectation-maximization al-
gorithm towards a maximum likelihood fitting.

The expected negative-loglikelihood of the model is

L(θ) = EZ|X [− logP (X,Z|θ)]
= log |Q0|+ E[(z1 − µ0)∗Q−10 (z1 − µ0)]

+ E[

N−1∑
n=1

(z −A · zn)∗ ·Q−1 · (zn+1 −A · zn)]

+ E[

N∑
n=1

(xn −C · zn)∗ ·R−1 · (xn −C · zn)]

+ (N − 1) log |Q|+N log |R| (1)

where the expectation E[] is over the posterior distri-
bution of Z given X.

Unlike traditional Kalman filters, the objective here
is function of complex values, requiring nonstandard
optimization in complex domain. We will first de-
scribe the M-step here. In the negative-loglikelihood,
there were two sets of unknowns, the parameters and
the posterior distribution. The overall idea of the
Complex-Fit algorithm is to optimize over the param-
eter set θ as if we know the posterior and then estimate
the posterior with current parameters. It then takes
turns to obtain the optimal solution.

Complex-Fit M-step The M-step is derived by
taking complex derivatives of the objective function
and equating them to zeros. Unlike the real valued
version, taking derivatives of complex functions should
take extra care, since they are not always analytic
or holomorphic. The above function (1) is not dif-
ferentiable in classical setting since it does not sat-
isfy Cauchy-Riemann condition(Mathews & Howell,
2006). However, if x and x̄ are treated independently,
we could obtain their generalized partial derivatives,
as defined in (Brandwood, 1983; Hjorungnes & Ges-
bert, 2007). The optimal of the function f(x) can be
achieved when both partial derivatives of ∂

∂x and ∂
∂x

equal zero.

The solution minimizing L is given by

∂

∂µ0

L = 0
∂

∂µ0

L = 0
∂

∂Q0

L = 0
∂

∂Q0

L = 0

where

∂

∂µ0

L =− (E[z]1 − µ0)∗ ·Q−10 (2)

∂

∂µ0

L =− (E[z]1 − µ0)T · (Q−10 )T (3)

∂

∂Q0

L =(QT
0 )−1 − (QT

0 )−1 · E[(z1 − µ0) · (z1 − µ0)T ]

· (QT
0 )−1 (4)

It follows that µ0 = E[z1] andQ0 = E[z1 ·z∗1]−µ0 ·µ∗0.
Similarly, we obtain update rules for A, Q, C and R,
by taking partial derivatives, ∂

∂AL, ∂
∂A
L, ∂

∂QL, ∂
∂Q
L,

∂
∂CL, ∂

∂C
L, ∂

∂RL, and ∂
∂R
L, and equating them to

zeros. Here is the final update rules for each of these
parameters.

A =(

N−1∑
n=1

E[zn+1 · z∗n]) · (
N−1∑
n=1

E[zn · z∗n])−1 (5)

Q =
1

N − 1

N−1∑
n=1

(
E[zn+1 · z∗n+1]− E[zn+1 · z∗n] ·A∗

−A · E[zn · z∗n+1] +A · E[zn · z∗n] ·A∗
)

(6)

C =(

N∑
n=1

xn · E[z∗n]) · (
N∑
n=1

E[zn · z∗n])−1 (7)

R =
1

N

N∑
n=1

(
xn · x∗n − xn · E[z∗n] ·C∗ −C · E[zn] · x∗n

+C · E[zn · z∗n] ·C∗
)

(8)

Complex-Fit E-step The above M-step requires
computation of the sufficient statistics on the poste-
rior distribution of hidden variables z. During the
E-step, we will compute mean and covariance of the
marginal and joint posterior distributions P (zn|X)
and P (zn, zn+1|X). The E-step computes the pos-
teriors in with the forward-backward sub steps (corre-
sponding to Kalman filtering and smoothing in the tra-
ditional LDS). The forward step computes the partial
posterior zn|x1 . . .xn, and the backward pass com-
putes the full posterior distributions. We can show by
induction that all these posteriors are complex normal
distributions and the transition between them satisfy-
ing the condition of linear Gaussian distribution. Such
facts will help us derive an algorithm to find the means
and variances of those posterior distributions.
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The forward step computes the partial posterior
zn|x1 . . .xn from the beginning z1 to the tail of the
chain zN . By exploiting Markov properties and ap-
plying Lemma 1, Lemma 2 and Lemma 3 on poste-
riors zn|x1 . . .xn, we can show that zn|x1 . . .xn ∼
CN (un,Un), with following equations for computing
un and Un recursively,

un+1 = A · un +Kn+1 · (xn+1 −C ·A · un) (9)

Un+1 = (I −Kn+1 ·C) · P n+1 (10)

and we define,

P n+1 = A ·Un ·A∗ +Q (11)

Kn+1 = P n+1 ·C∗ · (R+C · P n+1 ·C∗)−1 (12)

The initial step is given by u1 = µ0+K1 ·(x1−C ·µ0)
and U1 = (I−K1 ·C) ·Q0. K1 is the complex-valued
“Kalman gain” matrix, K1 = Q0 ·C

∗ · (R +C ·Q0 ·
C∗)−1.

The backward step computes the posterior
zn|x1 . . .xN from the tail zN to the head of
the chain z1. Again using the lemmas of com-
plex linear Gaussian distributions, we can show
zn|x1 . . .xN ∼ CN (vn,V n), and compute the pos-
terior means and variances through the following
equations.

vn = un + Jn+1 · (vn+1 −A · un) (13)

V n = Un + Jn+1 · (V n+1 − P n+1) · J∗n+1 (14)

where Jn+1 = Un ·A∗ · (A · Un ·A∗ +Q)−1 = Un ·
A∗ · P−1n+1 Obviously, vN = uN and V N = UN .

With a similar induction, from Lemma 1 we can com-
pute the following sufficient statistics,

E[zn · z∗n] = V n + vn · v∗n (15)

E[zn · z∗n+1] = Jn+1 · V n+1 + vn · v∗n+1 (16)

Special Case and CLDS Clustering In addition
to the full model as described above, we consider a
special case with diagonal transition matrix A. The
diagonal elements of A correspond to its eigenvalues,
denoted as a. The eigenvalues of the matrix will be
similar to the frequencies in Fourier analysis. The jus-
tification of using diagonal matrix lies in the observa-
tion of the rotation invariance property in linear Gaus-
sian distributions (Lemma 4). In simplest case, such
rotation invariant matrix is diagonal.

Lemma 4 (Rotation invariance) Assume x ∼
CN (0, I) and B = A · V with unitary V .1, it follows

1A matrix V is unitary if V · V ∗ = V ∗ · V = I

that A ·x and Bx have exactly the same distribution.
By abusing the definition of ∼ slightly, it can be writ-
ten as A · x ∼ Bx ∼ CN (0,A ·A∗).

To get the optimal solution in Eq. (1) with such a
diagonal A, we will use the definition of Hadamard
product2 and its related results. Let a be the diagonal
elements of A. Since A is diagonal, the difference will
result in a rather different solution in partial deriva-
tives. The conditions of optimal solutions are given
by

∂L
∂a

=

N−1∑
n=1

E[(Q−1 · (zn+1 − a ◦ zn)) ◦ zn]∗ = 0

∂L
∂Q

=(N − 1)(QT )−1 − (QT )−1 · (
N−1∑
n=1

E[(zn+1 − a ◦ zn)

· (zn+1 − a ◦ zn)T ]) · (QT )−1 = 0

To solve the above equations, we use the following it-
erative update rules.

a =(Q−1 ◦ (

N−1∑
n=1

E[zn · z∗n])T )−1

· (Q−1 ◦ (

N−1∑
n=1

E[zn+1 · z∗n])T ) · 1 (17)

Q =
1

N − 1

N−1∑
n=1

(
E[zn+1 · z∗n+1]− E[zn+1 · (a ◦ zn)∗]

− E[(a ◦ zn) · z∗n+1] + E[(a ◦ zn) · (a ◦ zn)∗]
)

(18)

Once we have the best estimate of such parameter-
s using Complex-Fit(with diagonal transition matrix),
the overall idea of CLDS clustering is essentially us-
ing the output matrix in CLDS as features, and then
applying any off-the-shelf clustering algorithm (e.g. k-
means clustering). In more detail, we take only the
magnitude of C to eliminate the lags in the data, s-
ince its magnitude represents the energy or weight of
participation of the learned hidden variables in the ob-
servations. In this sense, our method can also be used
as a feature extraction tool in other applications such
as signal compression.

5. Discussion

Relationship to (real-valued) Linear Dynamical
Systems The graphical representation of our CLDS
is similar to the real-valued linear dynamical system-
s (LDS, also known as Kalman filters), except that

2(A ◦B)i,j = Ai,j ·Bi,j
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the conditional distribution changes to complex-valued
normal distribution.

But due to this, there is a significant difference in the
space of the optimal solutions. In LDS, such a space
contains many essentially equivalent solutions. Con-
sider a set of estimated parameters for LDS: it will
yield equivalent parameters simply by exchanging the
order in hidden variables and initial state (and corre-
spondingly columns of A and C). A generalization of
this would be a proper “rotation” of the hidden space,
by applying a linear transformation with a orthogonal
matrix. Our approach actually tries to find a repre-
sentative for such an equivalent family of solutions. In
traditional Kalman filters, it is not always possible to
get the most compact solution with real valued tran-
sition matrix, while in our model with the diagonal
transition matrix, the solution is invariant in a proper
sense.

Furthermore, LDS does not have a explicit notion of
time shifts in its model, while in our method, it is al-
ready encoded in the phase of initial states and the
output matrix C. This is also confirmed by our ex-
periments: LDS does not generate features helpful in
clustering, while CLDS significantly improves that.

Relationship to Discrete Fourier Transform
CLDS is closely related to Fourier analysis, since the
eigenvalues of the transition matrix A essentially en-
code a set of base frequencies. In the special restricted
case (used for clustering), the diagonal elements of A
directly tell those frequencies. Hence, with proper con-
struction, CLDS includes Discrete Fourier transform
(DFT) as a special instance.

Consider one dimensional sequence x1,··· ,N : we can
build a probabilistic version of DFT by fixing µ0 = 1,
and A = diag(exp( 2πi

N k)), k = 1, . . . , N . We conjec-
ture that if we train such a model on the data, the
estimated output matrix C will be equivalent to the
Fourier coefficients from DFT. This is also confirmed
by our experiments on synthetic signals. Figure 2 ex-
hibits the spectrum of coefficients from DFT and the
output matrix C from CLDSfor two signals. They al-
most perfectly match each other.

Compared to DFT, our proposed method clearly en-
joys four benefits: (a) it allows dynamics correspond-
ing to arbitrary frequency components, contrary to a
fixed set of base frequencies as in DFT; (b) being an
explicit probabilistic model allows a rich family of ex-
tension to other non Gaussian noises; (c) it has direct
control over the model complexity and sparsity with
the number of hidden variables, i.e. choosing a small
number will result in forcing the approximation of the
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Figure 2. Spectrum of synthetic signals. Note CLDS can
learn spectrums very close to DFT’s, by fixing diagonal
transition matrices corresponding to base frequencies.
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Figure 3. Limitation of DFT (right) on a partially observed
synthetic signal (left). Note DFT can not recover exact
frequencies, while by setting hidden dimension to be two,
CLDS’s estimates are a = {0.9991 ± 0.0494i}, equivalent
to frequencies of ±1/127.19, close to true signal.

harmonics or frequencies in the data; (d) it can esti-
mate harmonic components jointly present in multiple
signals (but with small noise), while it is not straight-
forward to extend DFT to multiple sequences. For e.g.,
Figure 3 showcases the limitation of DFT on signals
only observed for partial cycles: it fails to recognize the
exact frequency component in the signal (non-integer
multiple of the base frequency), while CLDS can al-
most perfectly identify the frequency components with
two hidden variables.

Other related models Autoregression (AR) is an-
other popular model for time series used for forecast-
ing. CLDS also includes AR as a special case, which
can be obtained by setting the output matrix C to
be the identity matrix. Principal component analysis
(PCA) can also be viewed as a special case of CLD-
S. By setting the transition matrix to be zeros, CLDS
degenerates to Probabilistic PCA (Tipping & Bishop,
1999).

6. Experiments

We used two datasets (MOCAPPOS and MOCAPANG) from
a public human motion capture database3. MOCAPPOS

includes 49 motion sequences of marker positions in
body local coordinates, each motion is labeled with ei-

3http://mocap.cs.cmu.edu/ subject #16 and #35
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ther walking or running as annotated in the database.
On the other hand, MOCAPANG includes 33 sequences
of joint angles, 10 being walking motions and the rest
running. While the original motion sequences have
different lengths, we trim them with equal duration.
Since there are multiple markers used in the motion
capture, we only choose the one (e.g. right foot mark-
er) that is most significant in telling human motion-
s apart, suggested by domain experts. Alternatively,
this can also be achieved through an additional feature
selection process, which is not the focus of our paper.

We compare our method against several baselines:

PCA: As we mentioned in background, Principal com-
ponent analysis is a textbook method to extract fea-
tures from high dimensional data4. In this method,
we follow a standard pipeline of clustering high di-
mensional data (Ding & He, 2004): first performing a
dimensionality reduction on the data matrix by keep-
ing k (=2) principal components, and then clustering
on the PCA scores using k-means.

DFT: The second baseline is the Fourier method. This
method first computes Fourier coefficients for each mo-
tion sequences using Discrete Fourier Transform. It
then uses PCA to extract two features from the Fouri-
er coefficients, and finally finds clusters again through
k-means clustering on top of the DFT-PCA features.

DTW: The third method, dynamic time warping
(DTW), is a popular method to calculate the mini-
mal distance between pairs of sequences by allowing
flexible shift in alignment (thus it would be fair com-
petitor on time series with time lags). In this method,
we compute all pairwise DTW distances and again use
the k-means on top of them to find clusters.

KF: Another baseline method is learning a Kalman
filter or linear dynamical systems (LDS) from the da-
ta and using its output matrix as features in k-mean
clustering. In this experiment, we tried a few values
for the number of hidden variables and chose the one
with best clustering performance (=8).

To evaluate the quality, we use the conditional en-
tropy S of the true labeling with respect to the pre-
diction, defined by the confusion matrix M : S(M) =∑
i,j

Mi,j∑
k,lMk,l

log
∑
kMi,k

Mi,j
. The element Mi,j corre-

sponds to the number of sequences with true label
j in cluster i. Intuitively, the conditional entropy S
tells difference between the prediction and the actu-
al, therefore a lower score indicates a better prediction

4Note: the dimensionality in PCA corresponds to the
duration in time series. The dimensionality in time series
usually refers to the number of sequences.

Table 1. Conditional entropies (S) of clustering methods
on both datasets. Note a lower score corresponds to a
better clustering, and in both cases our proposed method
CLDS achieves the lowest scores 1.5 to 5 times better than
others, yielding clusters most close to the true labels.

methods MOCAPPOS S MOCAPANG S
CLDS 0.3786 0.1015
PCA 0.6818 0.3635
DFT 0.6143 0.2538
DTW 0.5707 0.4229
KF 0.6749 0.5239
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Figure 4. Typical scatter plots: Top two features extracted
by different methods on MOCAPPOS. Note that CLDS pro-
duces a clear separated grouping of walking motions (blue
�) and running motion (red ?).

and the best case is S = 0. In information theory, the
conditional entropy corresponds to the additional in-
formation of the actual labels based on the prediction.

Table 1 lists the conditional entropies of each method
on the task of clustering MOCAPPOS and MOCAPANG

datasets. Note that our method CLDS achieves the
best performance with the lowest entropy. It is also
confirmed in the scatter plot of top two features using
CLDS (Figure 4).

7. Conclusion

Motivated by clustering human motion-capture time
sequences, in this paper we developed a novel method
of clustering time series data, that can learn joint tem-
poral dynamics in the data (Property P1), handle time
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lags (Property P2) and produces interpretable features
(Property P3). Specifically, our contributions are:

1. Design of CLDS : We developed CLDS, complex-
valued linear dynamical systems. We then pro-
vided Complex-Fit, a novel complex valued EM
algorithm for learning the model parameters from
observation sequences.

2. Application to Clustering : We used a special case
of CLDS for time series clustering by enforcing a
diagonal transition matrix, corresponding to fre-
quencies. Our clustering method then uses the
participation weight (energy) of the hidden vari-
ables as features, thus eliminating lags. Such an
approach yields all three desired properties.

3. Validation: Our approach produces significant
improvement in clustering quality (1.5 to 5 times
better than several popular time series clustering
methods) when evaluated on real motion capture
sequences.

CLDS is insensitive to the rotations in the hidden vari-
ables due to properties of the complex normal distribu-
tions. Moreover we showed that CLDS includes PCA,
DFT and AR as special cases.
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