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Abstract

Regularization is a powerful technique
for extracting useful information from
noisy data. Typically, it is implemented
by adding some sort of norm constraint
to an objective function and then ex-
actly optimizing the modified objective
function. This procedure often leads
to optimization problems that are com-
putationally more expensive than the
original problem, a fact that is clearly
problematic if one is interested in large-
scale applications. On the other hand, a
large body of empirical work has demon-
strated that heuristics, and in some
cases approximation algorithms, devel-
oped to speed up computations some-
times have the side-effect of performing
regularization implicitly. Thus, we con-
sider the question: What is the regular-
ized optimization objective that an ap-
proximation algorithm is exactly opti-
mizing?

We address this question in the con-
text of computing approximations to
the smallest nontrivial eigenvector of a
graph Laplacian; and we consider three
random-walk-based procedures: one
based on the heat kernel of the graph,
one based on computing the the PageR-
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ank vector associated with the graph,
and one based on a truncated lazy ran-
dom walk. In each case, we provide a
precise characterization of the manner in
which the approximation method can be
viewed as implicitly computing the exact
solution to a regularized problem. In-
terestingly, the regularization is not on
the usual vector form of the optimization
problem, but instead it is on a related
semidefinite program.

1. Introduction

Regularization is a powerful technique in statis-
tics, machine learning, and data analysis for learn-
ing from or extracting useful information from
noisy data (Neumaier, 1998; Chen & Haykin,
2002; Bickel & Li, 2006). It involves (explicitly
or implicitly) making assumptions about the data
in order to obtain a “smoother” or “nicer” so-
lution to a problem of interest. The technique
originated in integral equation theory, where it
was of interest to give meaningful solutions to ill-
posed problems for which a solution did not ex-
ist (Tikhonov & Arsenin, 1977). More recently,
it has achieved widespread use in statistical data
analysis, where it is of interest to achieve solu-
tions that generalize well to unseen data (Hastie
et al., 2003). For instance, much of the work in
kernel-based and manifold-based machine learn-
ing is based on regularization in Reproducing ker-
nel Hilbert spaces (Schölkopf & Smola, 2001).

Typically, regularization is implemented via a
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two step process: first, add some sort of norm
constraint to an objective function of interest;
and then, exactly optimize the modified objec-
tive function. For instance, one typically consid-
ers a loss function f(x) that specifies an empirical
penalty depending on both the data and a param-
eter vector x; and a regularization function g(x)
that encodes prior assumptions about the data
and that provides capacity control on the vector x.
Then, one must solve an optimization problem of
the form:

x̂ = argminxf(x) + λg(x). (1)

A general feature of regularization implemented
in this manner is that, although one obtains solu-
tions that are “better” (in some statistical sense)
than the solution to the original problem, one
must often solve a modified optimization prob-
lem that is “worse” (in the sense of being more
computationally expensive) than than the original
optimization problem.1 Clearly, this algorithmic-
statistical tradeoff is problematic if one is inter-
ested in large-scale applications.

On the other hand, it is well-known amongst prac-
titioners that certain heuristics that can be used
to speed up computations can sometimes have the
side-effect of performing smoothing or regulariza-
tion implicitly. For example, “early stopping” is
often used when a learning model such as a neural
network is trained by an iterative gradient descent
algorithm; and “binning” is often used to aggre-
gate the data into bins, upon which computations
are performed. As we will discuss below, we have
also observed a similar phenomenon in the empir-
ical analysis of very large social and information
networks (Leskovec et al., 2010). In these applica-
tions, the size-scale of the networks renders pro-
hibitive anything but very fast nearly-linear-time
algorithms, but the sparsity and noise properties
of the networks are sufficiently complex that there
is a need to understand the statistical properties
implicit in these fast algorithms in order to draw
meaningful domain-specific conclusions from their
output.

1Think of ridge regression or the ℓ1-regularized ℓ2-
regression problem. More generally, however, even assum-
ing that g(x) is convex, one obtains a linear program or
convex program that must solved.

Motivated by these observations, we are inter-
ested in understanding in greater detail the man-
ner in which algorithms that have superior algo-
rithmic and computational properties either do or
do not also have superior statistical properties. In
particular, we would like to know:

• To what extent can one formalize the idea
that performing an approximate computa-
tion can implicitly lead to more regular so-
lutions?

Rather than addressing this question in full gen-
erality, in this paper we will address it in the con-
text of computing the first nontrivial eigenvector
of the graph Laplacian. (Of course, even this spe-
cial case is of interest since a large body of work
in machine learning, data analysis, computer vi-
sion, and scientific computation makes use of this
vector.) Our main result is a characterization of
this implicit regularization in the context of three
random-walk-based procedures for computing an
approximation to this eigenvector. In particular:

• We consider three random-walk-based
procedures—one based on the heat kernel of
the graph, one based on computing the the
PageRank vector associated with the graph,
and one based on a truncated lazy random
walk—for computing an approximation
to the smallest nontrivial eigenvector of a
graph Laplacian, and we show that these
approximation procedures may be viewed as
implicitly solving a regularized optimization
problem exactly.

Interestingly, in order to achieve this identifica-
tion, we need to relax the standard spectral op-
timization problem to a semidefinite program.
Thus, the variables that enter into the loss func-
tion and the regularization term are not unit vec-
tors, as they are more typically in formulations
such as Problem (1), but instead they are dis-
tributions over unit vectors. This was somewhat
unexpected, and the empirical implications of this
remain to be explored.

Before proceeding, let us pause to gain an intu-
ition of our results in a relatively simple setting.
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To do so, consider the so-called Power Iteration
Method, which takes as input an n × n symmet-
ric matrix A and returns as output a number λ
(the eigenvalue) and a vector v (the eigenvector)
such that Av = λv.2 The Power Iteration Method
starts with an initial random vector, call it ν0, and
it iteratively computes νt+1 = Aνt/||Aνt||2. Un-
der weak assumptions, the method converges to
v1, the dominant eigenvector of A. The reason is
clear: if we expand ν0 =

∑n
i=1 γivi in the basis

provided by the eigenfunctions {vi}
n
i=1 of A, then

νt =
∑n

i=1 γt
ivi → v1. If we truncate this method

after some very small number, say 3, iterations,
then the output vector is clearly a suboptimal
approximation of the dominant eigen-direction of
the particular matrix A; but due to the admixing
of information from the other eigenvectors, it may
be a better or more robust approximation to the
best “ground truth eigen-direction” in the ensem-
ble from which A was drawn. It is this intuition
in the context of computing eigenvectors of the
graph Laplacian that our main results formalize.

2. Overview of the problem and

approximation procedures

For a connected, weighted, undirected graph G =
(V, E), let A be its adjacency matrix and D its
diagonal degree matrix, i.e., Dii =

∑

j:(ij)∈E wij ,
where wij is the weight of edge (ij). Let M =
AD−1 be the natural random walk transition
matrix associated with G, in which case W =
(I+M)/2 is the usual lazy random walk transition
matrix. (Thus, we will be post-multiplying by col-
umn vectors.) Finally, let L = I − D−1/2AD−1/2

be the normalized Laplacian of G.

We start by considering the standard spectral op-
timization problem.

SPECTRAL : min xT Lx

s.t. xT x = 1

xT D1/21 = 0.
2Our result for the truncated lazy random walk gen-

eralizes a special case of the Power Method. Formalizing
the regularization implicit in the Power Method more gen-
erally, or in other methods such as the Lanczos method
or the Conjugate Gradient method, is technically more in-
tricate due to the renormalization at each step, which by
construction we will not need.

In the remainder of the paper, we will assume that
this last constraint always holds, effectively lim-
iting ourselves to be in the subspace R

n ⊥ 1, by
which we mean {x ∈ R

n : xT D1/21 = 0}. (Omit-
ting explicit reference to this orthogonality con-
straint and assuming that we are always working
in the subspace R

n ⊥ 1 makes the statements and
the proofs easier to follow and does not impact
the correctness of the arguments. To check this,
notice that the proofs can be carried out in the
language of linear operators without any reference
to a particular matrix representation in R

n.)

Next, we provide a description of three related
random-walk-based matrices that arise naturally
when considering a graph G.

• Heat Kernel. The Heat Kernel of a con-
nected, undirected graph G can be defined as:

Ht = exp(−tL) =
∞

∑

k=0

(−t)k

k!
Lk, (2)

where t ≥ 0 is a time parameter. Alterna-
tively, it can be written as Ht =

∑

i e
−λitPi,

where λi is the i-th eigenvalue of L and Pi

denotes the projection into the eigenspace as-
sociated with λi. The Heat Kernel is an op-
erator that satisfies the heat equation ∂Ht

∂t =
−LHt and thus that describes the diffusive
spreading of heat on the graph.

• PageRank. The PageRank vector π(γ, s)
associated with a connected, undirected
graph G is defined to be the unique solu-
tion to

π(γ, s) = γs + (1 − γ)Mπ(γ, s),

where γ ∈ (0, 1) is the so-called teleporta-
tion constant; s ∈ R

n is a preference vector,
often taken to be (up to normalization) the
all-ones vector; and M is the natural random
walk matrix associated with G (Langville &
Meyer, 2004).3 If we fix γ and s, then it is
known that π(γ, s) = γ

∑∞
t=0(1−γ)tM ts, and

3Alternatively, one can define π′(γ, s) to be the unique
solution to π = γs + (1 − γ)Wπ, where W is the 1/2-lazy
random walk matrix associated with G. These two vectors
are related as π′(γ, s) = π( 2γ

1+γ
, s) (Andersen et al., 2006).
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thus that π(γ, s) = Rγs, where

Rγ = γ (I − (1 − γ)M)−1 . (3)

This provides an expression for the PageRank
vector π(γ, s) as a γ-dependent linear trans-
formation matrix Rγ multiplied by the pref-
erence vector s (Andersen et al., 2006). That
is, Eqn. (3) simply states that PageRank can
be presented as a linear operator Rγ acting
on the seed s.

• Truncated Lazy Random Walk. Since
M = AD−1 is the natural random walk tran-
sition matrix associated with a connected,
undirected graph G, it follows that

Wα = αI + (1 − α)M (4)

represents one step of the α-lazy random
walk transition matrix, in which at each step
there is a holding probability α ∈ [0, 1]. Just
as M is similar to M ′ = D−1/2MD1/2, which
permits the computation of its real eigenval-
ues and full suite of eigenvectors that can
be related to those of M , Wα is similar to
W ′

α = D−1/2WαD1/2. Thus, iterating the
random walk Wα is similar to applying the
Power Method to W ′

α, except that the renor-
malization at each step need not be per-
formed since the top eigenvalue is unity.

Each of these three matrices has been used to
compute vectors that in applications are then
used in place of the smallest nontrivial eigenvector
of a graph Laplacian. This is typically achieved
by starting with an initial random vector and then
applying the Heat Kernel matrix, or the PageR-
ank operator, or truncating a Lazy Random Walk.

Finally, we recall that the solution SPECTRAL

can also be characterized as the solution to a
semidefinite program (SDP). To see this, consider
the following SDP:

SDP : min L • X

s.t. Tr(X) = I • X = 1

X � 0,

where • stands for the Trace, or matrix inner
product, operation, i.e., A • B = Tr(ABT ) =

∑

ij AijBij for matrices A and B. (Recall that,
both here and below, I is the Identity on the sub-
space perpindicular to the all-ones vector.) SDP

is a relaxation of the spectral program SPECTRAL

from an optimization over unit vectors to an opti-
mization over distributions over unit vectors, rep-
resented by the density matrix X.

To see the relationship between the solution x of
SPECTRAL and the solution X of SDP, recall that
a density matrix X is a matrix of second moments
of a distribution over unit vectors. In this case,
L • X is the expected value of xT Lx, when x is
drawn from a distribution defined by X. If X is
rank-1, as is the case for the solution to SDP, then
the distribution is completely concentrated on a
vector v, and the SDP and vector solutions are the
same, in the sense that X = vvT . More generally,
as we will encounter below, the solution to an SDP
may not be rank-1. In that case, a simple way to
construct a vector x from a distribution defined by
X is to start with an n-vector ξ with entries drawn
i.i.d. from the normal distribution N(0, 1/n), and
consider x = X1/2ξ. Note that this procedure
effectively samples from a Gaussian distribution
with second moment X.

3. Approximation procedures and

regularized spectral optimization

problems

3.1. A simple theorem characterizing the

solution to a regularized SDP

Here, we will apply regularization technique to the
SDP formulation provided by SDP, and we will
show how natural regularization functions yield
distributions over vectors which correspond to the
diffusion-based or random-walk-based matrices.
In order to regularize SDP, we want to modify
it such that the distribution is not degenerate on
the second eigenvector, but instead spreads the
probability on a larger set of unit vectors around
v. The regularized version of SDP we will consider
will be of the form:

(F, η) − SDP min L • X + 1/η · F (X)

s.t. I • X = 1

X � 0,



Implementing Regularization Implicitly

where η > 0 is a trade-off or regularization
parameter determining the relative importance
of the regularization term F (X), and where F
is a real strictly-convex infinitely-differentiable
rotationally-invariant function over the positive
semidefinite cone. (Think of F as a strictly con-
vex function of the eigenvalues of X.) For exam-
ple, F could be the negative of the von Neumann
entropy of X; this would penalize distributions
that are too concentrated on a small measure of
vectors. We will consider other possibilities for
F below. Note that due to F , the solution X of
(F, η) − SDP will in general not be rank-1.

Our main results on implicit regularization via ap-
proximate computation will be based on the fol-
lowing structural theorem that provides sufficient
conditions for a matrix to be a solution of a reg-
ularized SDP of a certain form. Note that the
Lagrangian parameter λ and its relationship with
the regularization parameter η will play a key role
in relating this structural theorem to the three
random-walk-based procedures described previ-
ously.

Theorem 1 Let G be a connected, weighted,
undirected graph, with normalized Laplacian L.
Then, the following conditions are sufficient for
X⋆ to be an optimal solution to (F, η) − SDP.

1. X⋆ = (∇F )−1 (η · (λ∗I − L)), for a λ∗ ∈ R,

2. I • X⋆ = 1,

3. X⋆ � 0.

Proof: For a general function F , we can write the
Lagrangian L for (F, η) − SDP as follows:

L(X, λ, U) = L • X +
1

η
· F (X)

− λ · (I • X − 1) − U • X

where λ ∈ R, U � 0. The dual objective function
is

h(λ, U) = min
X�0

L(X, λ, U).

As F is strictly convex, differentiable and rota-
tionally invariant, the gradient of F over the pos-

itive semidefinite cone is invertible and the right-
hand side is minimized when

X = (∇F )−1(η · (−L + λ∗ · I + U)),

where λ∗ is chosen such that the second condi-
tion in the statement of the theorem is satisfied.
Hence,

h(λ⋆, 0) = L • X⋆ +
1

η
· F (X⋆) − λ⋆ · (I • X⋆ − 1)

= L • X⋆ +
1

η
· F (X⋆).

By Weak Duality, this implies that X⋆ is an op-
timal solution to (F, η) − SDP.

⋄

Two clarifying remarks regarding this theorem are
in order. First, the fact that such a λ∗ exists is an
assumption of the theorem. Thus, in fact, the the-
orem is just a statement of the KKT conditions
and strong duality holds for our SDP formula-
tions. For simplicity and to keep the exposition
self-contained, we decided to present the proof of
optimality, which is extremely easy in the case of
an SDP with only linear constraints. Second, we
can plug the dual solution (λ∗, 0) into the dual
objective and show that, under the assumptions
of the theorem, we obtain a value equal to the pri-
mal value of X∗. This certifies that X∗ is optimal.
Thus, we do not need to assume U = 0; we just
choose to plug in this particular dual solution.

3.2. The connection between approximate

eigenvector computation and implicit

statistical regularization

In this section, we will consider the three
diffusion-based or random-walked-based heuris-
tics described in Section 2, and we will show that
each may be viewed as solving (F, η) − SDP for an
appropriate value of F and η.

Generalized Entropy and the Heat Kernel.

Consider first the Generalized Entropy function:

FH(X) = Tr(X log X) − Tr(X), (5)

for which:

(∇FH)(X) = log X

(∇FH)−1(Y ) = expY.
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Hence, the solution to (FH, η)−SDP has the form:

X⋆
H = exp(η · (λI − L)), (6)

for appropriately-chosen values of λ and η. Thus,
we can establish the following lemma.

Lemma 1 Let X⋆
H be an optimal solution to

(F, η) − SDP, when F (·) is the Generalized En-
tropy function, given by Equation (5). Then

X⋆
H =

Hη

Tr [Hη]
,

which corresponds to a “scaled” version of the
Heat Kernel matrix with time parameter t = η.

Proof: From Equation (6), it follows that X⋆
H =

exp(−η · L) · exp(η · λ), and thus by setting λ =
−1/η log(Tr(exp(−η · L))), we obtain the expres-
sion for X⋆

H given in the lemma. Thus, X⋆
H � 0

and Tr(X⋆
H) = 1, and by Theorem 1 the lemma

follows.
⋄

Conversely, given a graph G and time parame-
ter t, the Heat Kernel of Equation (2) can be
characterized as the solution to the regularized
(FH, η) − SDP, with the regularization parameter
η = t (and for the value of the Lagrangian param-
eter λ as specified in the proof).

Log-determinant and PageRank. Next,
consider the Log-determinant function:

FD(X) = − log det(X), (7)

for which:

(∇FD)(X) = −X−1

(∇FD)−1(Y ) = −Y −1.

Hence, the solution to (FD, η)−SDP has the form:

X⋆
D = −(η · (λI − L))−1, (8)

for appropriately-chosen values of λ and η. Thus,
we can establish the following lemma.

Lemma 2 Let X⋆
D be an optimal solution to

(F, η) − SDP, when F (·) is the Log-determinant
function, given by Equation (7). Then

X⋆
D =

D−1/2RγD1/2

Tr [Rγ ]

which corresponds to a “scaled-and-stretched” ver-
sion of the PageRank matrix Rγ of Equation (3)
with teleportation parameter γ depending on η.

Proof: Recall that L = I − D−1/2AD−1/2. Since
X⋆

D = 1/η · (L−λI)−1, by standard manipulations
it follows that

X⋆
D =

1

η

(

(1 − λ)I − D−1/2AD−1/2
)−1

.

Thus, X⋆
D � 0 if λ ≤ 0, and X⋆

D ≻ 0 if λ < 0. If
we set γ = λ

λ−1 (which varies from 1 to 0, as λ
varies from −∞ to 0), then it can be shown that

X⋆
D =

−1

ηλ
D−1/2γ

(

I − (1 − γ)AD−1
)−1

D1/2.

By requiring that 1 = Tr[X⋆
D], it follows that

η = (1 − γ)Tr
[

(

I − (1 − γ)AD−1
)−1

]

and thus that ηλ = −Tr
[

γ(I − (1 − γ)AD−1)−1
]

.
Since Rγ = γ(I − (1 − γ)AD−1)−1, the lemma
follows.

⋄

Conversely, given a graph G and teleportation pa-
rameter γ, the PageRank of Equation (3) can be
characterized as the solution to the regularized
(FD, η) − SDP, with the regularization parameter
η as specified in the proof.

Standard p-norm and Truncated Lazy Ran-

dom Walks. Finally, consider the Standard p-
norm function, for p > 1:

Fp(X) =
1

p
||X||pp =

1

p
Tr(Xp), (9)

for which:

(∇Fp)(X) = Xp−1

(∇Fp)
−1(Y ) = Y

1/(p−1).

Hence, the solution to (Fp, η)−SDP has the form

X⋆
p = (η · (λI − L))q−1, (10)

where q > 1 is such that 1/p + 1/q = 1, for
appropriately-chosen values of λ and η. Thus, we
can establish the following lemma.
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Lemma 3 Let X⋆
p be an optimal solution to

(F, η) − SDP, when F (·) is the Standard p-norm
function, for p > 1, given by Equation (9). Then

X⋆
p =

D
−(q−1)

2 W q−1
α D

q−1
2

Tr
[

W q−1
α

]

which corresponds to a “scaled-and-stretched” ver-
sion of q− 1 steps of the Truncated Lazy Random
Walk matrix Wα of Equation (4) with laziness pa-
rameter α depending on η.

Proof: Recall that L = I − D−1/2AD−1/2. Since
X⋆

p = ηq−1 · (λI − L)q−1, by standard manipula-
tions it follows that

X⋆
p = ηq−1

(

(λ − 1)I + D−1/2AD−1/2
)q−1

Thus, X⋆
p � 0 if λ ≥ 1, and X⋆

p ≻ 0 if λ > 1. If

we set α = λ−1
λ (which varies from 0 to 1, as λ

varies from 1 to ∞), then it can be shown that

X⋆
p = (ηλ)q−1D−(q−1)/2

·
(

αI − (1 − α)AD−1
)q−1

D(q−1)/2.

By requiring that 1 = Tr[X⋆
p ], it follows that

η = (1 − α)
{

Tr
[

(

αI + (1 − α)AD−1
)q−1

]}1−p

and thus that

ηλ =
{

Tr
[

(

αI + (1 − α)AD−1
)q−1

]}1−p
.

Since Wα = αI+(1−α)AD−1, the lemma follows.
⋄

Conversely, given a graph G, a laziness parameter
α, and a number of steps q′ = q − 1, the Trun-
cated Lazy Random Walk of Equation (4) can be
characterized as the solution to the regularized
(Fp, η) − SDP, with the regularization parameter
η as specified in the proof.

4. Discussion and Conclusion

There is a large body of empirical and theoret-
ical work with a broadly similar flavor to ours.
(Due to space limitations, we omit this discus-
sion; but we provide a brief discussion and just

a few citations that most informed our approach
in the technical report version of this conference
paper (Mahoney & Orecchia, 2010).) None of
this work, however, takes the approach we have
adopted of asking: What is the regularized opti-
mization objective that a heuristic or approxima-
tion algorithm is exactly optimizing?

We should note that one can interpret our main
results from one of two alternate perspectives.
From the perspective of worst-case analysis, we
provide a simple characterization of several re-
lated methods for approximating the smallest
nontrivial eigenvector of a graph Laplacian as
solving a related optimization problem. By
adopting this view, it should perhaps be less sur-
prising that these methods have Cheeger-like in-
equalities, with related algorithmic consequences,
associated with them (Spielman & Teng, 2004;
Andersen et al., 2006; Chung, 2007a;b). From
a statistical perspective, one could imagine one
method or another being more or less appropri-
ate as a method to compute robust approxima-
tions to the smallest nontrivial eigenvector of a
graph Laplacian, depending on assumptions being
made about the data. By adopting this view, it
should perhaps be less surprising that these meth-
ods have performed well at identifying structure
in sparse and noisy networks (Andersen & Lang,
2006; Leskovec et al., 2008; 2010; Lu et al., 2010).

The particular results that motivated us to ask
this question had to do with recent empirical work
on characterizing the clustering and community
structure in very large social and information net-
works (Leskovec et al., 2008; 2010). As a part
of that line of work, Leskovec, Lang, and Ma-
honey (LLM) (Leskovec et al., 2010) were inter-
ested in understanding the artifactual properties
induced in output clusters as a function of differ-
ent approximation algorithms for a given objec-
tive function (that formalized the community con-
cept). LLM observed a severe tradeoff between
the objective function value and the “niceness”
of the clusters returned by different approxima-
tion algorithms. This phenomenon is analogous
to the bias-variance tradeoff that is commonly-
observed in statistics and machine learning, ex-
cept that LLM did not perform any explicit



Implementing Regularization Implicitly

regularization—instead, they observed this phe-
nomenon as a function of different approximation
algorithms to compute approximate solutions to
the intractable graph partitioning problem.

Although we have focused in this paper simply
on the problem of computing an eigenvector, one
is typically interested in computing eigenvectors
in order to perform some downstream data anal-
ysis or machine learning task. For instance, one
might be interested in characterizing the cluster-
ing properties of the data. Alternatively, the goal
might be to perform classification or regression
or ranking. It would, of course, be of interest
to understand how the concept of implicit regu-
larization via approximate computation extends
to the output of algorithms for these problems.
More generally, though, it would be of interest to
understand how this concept of implicit regular-
ization via approximate computation extends to
intractable graph optimization problems (that are
not obviously formulatable as vector space prob-
lems) that are more popular in computer science.
That is: What is the (perhaps implicitly regu-
larized) optimization problem that an approxi-
mation algorithm for an intractable optimization
problem is implicitly optimizing? Such graph
problems arise in many applications, but the the
formulation and solution of these graph problems
tends to be quite different than that of matrix
problems that are more popular in machine learn-
ing and statistics. Recent empirical and theoret-
ical evidence, however, clearly suggests that reg-
ularization will be fruitful in this more general
setting.
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