Skip to yearly menu bar Skip to main content


Poster
in
Workshop: Machine Learning for Astrophysics

Calibrated Predictive Distributions for Photometric Redshifts

Biprateep Dey · David Zhao · Brett Andrews · Jeff Newman · Rafael Izbicki · Ann Lee


Abstract: Many astrophysical analyses depend on estimates of redshifts (a proxy for distance) determined from photometric (i.e., imaging) data alone. Inaccurate estimates of photometric redshift uncertainties can result in large systematic errors. However, probability distribution outputs from many photometric redshift methods do not follow the frequentist definition of a Probability Density Function (PDF) for redshift --- i.e., the fraction of times the true redshift falls between two limits $z_{1}$ and $z_{2}$ should be equal to the integral of the PDF between these limits. Previous works have used the global distribution of Probability Integral Transform (PIT) values to re-calibrate PDFs, but offsetting inaccuracies in different regions of feature space can conspire to limit the efficacy of the method. We leverage a recently developed regression technique that characterizes the local PIT distribution at any location in feature space to perform a local re-calibration of photometric redshift PDFs resulting in calibrated predictive distributions. Though we focus on an example from astrophysics, our method can produce predictive distributions which are calibrated at all locations in feature space for any use case.

Chat is not available.