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A novel algorithmic framework rank—game for
imitation learning as a two-player ranking game.

The framework provides a unified way to combine
learning from preferences and demonstrations.

We propose a hew principled ranking loss that can
incorporate preferences from diverse sources.

rank—-game outperforms state-of-the-art imitation
learning methods in several MuloCo environments
and solve complex dextrous manipulation tasks that

no prior methods could solve.

\p denotes behavior represented by state-action or state only
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Preferences are more informative about the reward
function while being easy to obtain but...
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Classical IRL methods provide no way to incorporate
preferences among suboptimal trajectories. Prior

learning from preferences method work in offline
setting or use a restrictive reward class.

Motivation

visitation distribution.
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rank—-game

Automatically
generated rankings

Offline rankings annotated by a
human or an offline dataset
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L. : A new ranking loss

gap of k for all pairwise preferences.

L,.(DP;R) =

*(Pi»Pj)"“Dp[ *S,a~pi[(R(S; a) — 0)2] +

Theorem (Informal): Under finite samples representing preferences

a bounded f-divergence with the expert at equilibrium of the game.
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A new class of ranking loss functions that attempts to induce a performance

s api[(R(s,a) — k)?]]

between behaviors and approximate policy optimization, rank—-game has
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/ Solving the 2-player general-sum game\

* Stackelberg formulation is a performant method for
optimizing general sum games. One player is leader and
updated slow and other is follower and updated fast.
This formulation gives us two imitation algorithms:

Policy as Leader (PAL)
max {/(ﬁ; n) s.t R = argminL,(D™; R)}
T R
Reward as Leader (RAL)
min {Lk(D”; ﬁ) s.t m = argmaxJ(R; )}
R T
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Online IL (LfO): Outperforms state of the art methods.
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Online IL + preferences among suboptimal trajectories: Only
method that solves the task.
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