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Introduction

Convection Diffusion Equation

−ϵ∆u︸ ︷︷ ︸
Diffusion term

+ b.∇u︸ ︷︷ ︸
Convection term

= f︸︷︷︸
Source term

in Ω

u = ub on ΓD,

Variable Description Variable Description

Ω ⊂ Rn Bounded Domain x ∈ Ω ∪ Γ Spatial point in Domain
ϵ Diffusion coefficient u(x) Unknown scalar function

b ∈ W 1,∞(Ω)2 Convective velocity ub ∈ H1/2(ΓD) Dirichlet boundary value
f ∈ L2(Ω) External source term
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Introduction

Singularly Perturbed Differential Equations (SPDE)

−ϵu′′(x) + u′(x) = 1, for x ∈ (0, 1),

u(0) = u(1) = 0

Suppose, we set ϵ = 0, the above example will be converted as first-order ODE
u′(x) = 1 for 0 < x < 1

The exact solution will not satisfy both boundary conditions

This problem has no solution in C1[0, 1]

We infer that when ϵ is near zero, the solution behaves badly in some way

These types of differential equations are called singularly perturbed differential
equations (SPDE)

3 / 16



Introduction

Singularly Perturbed Differential Equations (SPDE)

Solution approaches a discontinuous limit
when ϵ → 0 and x = 1

Due to this boundary layer, the numerical
solution shows spurious oscillations.

Stabilization techniques are used to get rid
of these spurious oscillations

Finding an optimal stabilization parameter
is a challenge

Figure: Oscillations in Galerkin solution
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Introduction

Numerical Schemes for Partial Differential Equation

Conventional Numerical techniques

Finite Difference Method

Finite Element Method

Finite Volume Method

Stabilization Techniques

Local Projection Stabilization

Streamline Upwind Petrov Galerkin (SUPG)

Neural Network-based PDE solvers

Physics Informed Neural Network

DeepONet

Fourier Neural Operator
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Stabilized FEM: SUPG

Galerkin Weak Form of the SPDE

Find u such that for all v ∈ H1
0 (Ω)

a(u, v) = (f, v) (1)

where the bilinear form a(·, ·) : H1(Ω)×H1
0 (Ω) → R is defined by

a(u, v) =

∫
Ω
ϵu′v′dx+

∫
Ω
bu′vdx (2)

(f, v) =

∫
Ω
fvdx (3)

(·, ·) is the L2(Ω) inner product.
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Stabilized FEM: SUPG

Streamline Upwind Petrov Galerkin Technique(SUPG)

The residual of equation is :

R(u) = −ϵu′′ + bu′ − f (4)

Modified weak form: Find uh ∈ Vh such that:

ah(uh, vh) = ϵ(∇uh,∇vh) + (b · ∇uh, vh)

+
∑
i∈Ωh

τi(−ϵ∆uh + b · ∇uh − fh,b · ∇vh)Ωh︸ ︷︷ ︸
Stabilization term

= (f, vh) + (g, vh)ΓN ∀vh ∈ Vh

(5)

τi ∈ L2(Ω) is a user-chosen stabilization parameter.
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Stabilized FEM: SUPG

Stabilization Parameter τ

Standard formula:

For local Peclet number, Pe =
bh

2ϵ
;

τ =
h

2b
(coth (Pe)− 1

Pe
);

where coth =
exp(x) + exp(−x)

exp(x)− exp(−x)

(6)

Limitations:
Std. τ gives the exact solution only for the 1D problems
Std. τ technique has limited performance in complex cases

Objective: Develop a Neural Network model to identify an optimal stabilization
parameter for 1D and 2D cases
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SPDE-Net

SPDE-Net

Developed an ANN-based supervised and L2 EM techniques for predicting the
stabilization parameter in the SUPG method for one-dimensional SPDEs.

Developed a training dataset based on the equation coefficients and demonstrated
the prediction of global and local variants of stabilization parameter τ with ANN.

Showed that ANN-aided FEM solvers solve one-dimensional SPDEs with lesser
numerical error than that with pure neural network solvers such as PINNs.

4Sangeeta Yadav, Sashikumaar Ganesan, “SPDE-Net: Neural Network based prediction of
stabilization parameter for SUPG technique”, Proceedings of the 13th Asian Conference on Machine
Learning, PMLR 157:268-283, 2021
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SPDE-Net

SPDE-Net for 1D convection-diffusion equation

τ̂i(θ) = Gθ(ϵi, bi, hi) (7)

ûi(θ) = H(ϵi, bi, hi, τ̂i) (8)

θ∗supervised = argmin

N∑
i=1

loss (τ̂i(θ), τi) (9)

θ∗L2 Error Minimization = argmin

N∑
i=1

loss (ûi(θ), ui) (10)

where, Gθ is θ parameterized SPDE-Net, H is the FEM solution, τi is the stabilization
parameter, u is the analytical solution and N is the number of training examples.
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SPDE-Net

SPDE-Net

Figure: SPDE-Net: An end-to-end deep learning+FEM framework for solving SPDE
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SPDE-Net

L2 Error Minimization

Global τ̂ : Predict single τ for whole domain.

Local τ̂ : Predict 2 values, τ̂1 and τ̂2 for non-boundary and boundary layer regions.
In this particular case, the boundary region is either near x = 0(for b < 0) or
x = 1(for b > 0). For b > 0:

M =


1 0
1 0
...

...
0 1


Ncells,2

(11)

τpred = [τ̂1(θ), τ̂2(θ)]
T (12)

τ̂local = Mτpred (13)

12 / 16



SPDE-Net

Evaluation Metrics

RMSE =

√∑N
i=1(τ̂ − τ)2

N
(14)

L2Error =

(∫
Ω
(usupg(τ̂)− uanalytical)

2dx

) 1
2

(15)
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SPDE-Net Results

Qualitative Comparison

Test Case

ϵ = 1e− 11, b = 1.0, h = 0.0083
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SPDE-Net Results

Performance Comparison

Table: Performance comparison of different techniques for validation and test dataset

Validation data Test data
Technique ||û(τ̂)− u||L2(Ωh) ||τ̂ − τ ||L2(Ωh) ||û(τ̂)− u||L2(Ωh) ||τ̂ − τ ||L2(Ωh)

PINN 8.11 e−3 NA 7.82 e−3 NA

Supervised 5.13 e−6 2.79 e−7 7.88 e−6 3.72 e−7

L2 EM(τloc) 6.42 e−5 NA 1.70 e−4 NA

L2 EM(τg) 5.00 e−6 3.33 e−6 7.76 e−6 4.83 e−7

15 / 16



SPDE-Net Results

SPDE-Net: Neural Network-based prediction of stabilization parameter for SUPG
technique Sangeeta Yadav, Sashikumaar Ganesan Proceedings of The 13th Asian
Conference on Machine Learning, PMLR 157:268-283, 2021.
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