Predicting the stabilization quantity with neural networks for Singularly Perturbed Partial Differential Equations

Sangeeta Yadav & Prof. Sashikumaar Ganesan

Department of Computational and Data Sciences, Indian Institute of Science

July 28, 2023

Convection Diffusion Equation

$$\underbrace{-\epsilon\Delta u}_{\text{Diffusion term}} + \underbrace{\mathbf{b}.\nabla u}_{\text{Convection term}} = \underbrace{f}_{\text{Source term}} \text{ in } \Omega$$
$$u = u_b \text{ on } \Gamma^D,$$

Variable	Description	Variable	Description
$\Omega \subset \mathbb{R}^n$ ϵ $\mathbf{b} \in W^{1,\infty}(\Omega)^2$ $f \in L^2(\Omega)$	Bounded Domain Diffusion coefficient Convective velocity	$ \begin{array}{l} x \in \Omega \cup \Gamma \\ u(x) \\ u_b \in H^{1/2}(\Gamma^D) \end{array} $	Spatial point in Domain Unknown scalar function Dirichlet boundary value
$\mathbf{b} \in W^{1,\infty}(\Omega)^2$ $f \in L^2(\Omega)$	Convective velocity External source term	$u_b \in H^{1/2}(\Gamma^D)$	Dirichlet boundary valu

Singularly Perturbed Differential Equations (SPDE)

$$-\epsilon u''(x) + u'(x) = 1$$
, for $x \in (0, 1)$,
 $u(0) = u(1) = 0$

Suppose, we set $\epsilon=0,$ the above example will be converted as first-order ODE $u^\prime(x)=1$ for 0 < x < 1

- The exact solution will not satisfy both boundary conditions
- This problem has no solution in $C^1[0,1]$
- We infer that when ϵ is near zero, the solution behaves badly in some way
- These types of differential equations are called singularly perturbed differential equations (SPDE)

Singularly Perturbed Differential Equations (SPDE)

- Solution approaches a discontinuous limit when $\epsilon \to 0$ and x=1
- Due to this boundary layer, the numerical solution shows spurious oscillations.
- Stabilization techniques are used to get rid of these spurious oscillations
- Finding an optimal stabilization parameter is a challenge

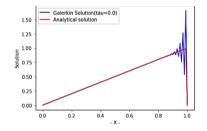


Figure: Oscillations in Galerkin solution

Numerical Schemes for Partial Differential Equation

Conventional Numerical techniques

- Finite Difference Method
- Finite Element Method
- Finite Volume Method

Stabilization Techniques

- Local Projection Stabilization
- Streamline Upwind Petrov Galerkin (SUPG)

Neural Network-based PDE solvers

- Physics Informed Neural Network
- DeepONet
- Fourier Neural Operator

Galerkin Weak Form of the SPDE

Find u such that for all $v \in H_0^1(\Omega)$

$$a(u,v) = (f,v) \tag{1}$$

where the bilinear form $a(\cdot,\cdot):H^1(\Omega)\times H^1_0(\Omega)\to R$ is defined by

$$a(u,v) = \int_{\Omega} \epsilon u'v'dx + \int_{\Omega} bu'vdx$$
(2)
(f,v) =
$$\int_{\Omega} fvdx$$
(3)

 (\cdot, \cdot) is the $L^2(\Omega)$ inner product.

Streamline Upwind Petrov Galerkin Technique(SUPG)

The residual of equation is :

$$R(u) = -\epsilon u'' + bu' - f \tag{4}$$

Modified weak form: Find $u_h \in V_h$ such that:

$$a_{h}(u_{h}, v_{h}) = \epsilon(\nabla u_{h}, \nabla v_{h}) + (\mathbf{b} \cdot \nabla u_{h}, v_{h}) + \sum_{i \in \Omega_{h}} \underbrace{\tau_{i}(-\epsilon \Delta u_{h} + \mathbf{b} \cdot \nabla u_{h} - f_{h}, \mathbf{b} \cdot \nabla v_{h})_{\Omega_{h}}}_{\text{Stabilization term}}$$
(5)
$$= (f, v_{h}) + (g, v_{h})_{\Gamma^{N}} \quad \forall v_{h} \in V_{h}$$

 $au_i \in L^2(\Omega)$ is a user-chosen stabilization parameter.

Stabilization Parameter τ

Standard formula:

For local Peclet number,
$$Pe = \frac{bh}{2\epsilon}$$
;

$$\tau = \frac{h}{2b} (\coth(Pe) - \frac{1}{Pe});$$
(6)
where $coth = \frac{\exp(x) + \exp(-x)}{\exp(x) - \exp(-x)}$

Limitations:

- $\bullet\,$ Std. τ gives the exact solution only for the 1D problems
- $\bullet\,$ Std. τ technique has limited performance in complex cases

Objective: Develop a Neural Network model to identify an optimal stabilization parameter for 1D and 2D cases

SPDE-Net

- Developed an ANN-based supervised and L^2 EM techniques for predicting the stabilization parameter in the SUPG method for one-dimensional SPDEs.
- Developed a training dataset based on the equation coefficients and demonstrated the prediction of global and local variants of stabilization parameter τ with ANN.
- Showed that ANN-aided FEM solvers solve one-dimensional SPDEs with lesser numerical error than that with pure neural network solvers such as PINNs.

⁴Sangeeta Yadav, Sashikumaar Ganesan, "SPDE-Net: Neural Network based prediction of stabilization parameter for SUPG technique", Proceedings of the 13th Asian Conference on Machine Learning, PMLR 157:268-283, 2021

SPDE-Net for 1D convection-diffusion equation

$$\hat{\tau}_i(\theta) = G_\theta(\epsilon_i, b_i, h_i) \tag{7}$$

$$\hat{u}_i(\theta) = H(\epsilon_i, b_i, h_i, \hat{\tau}_i)$$
(8)

$$\theta_{supervised}^{*} = \operatorname{argmin} \sum_{i=1}^{N} \operatorname{loss} \left(\hat{\tau}_{i}(\theta), \tau_{i} \right)$$

$$\theta_{L^{2} \text{ Error Minimization}}^{*} = \operatorname{argmin} \sum_{i=1}^{N} \operatorname{loss} \left(\hat{u}_{i}(\theta), u_{i} \right)$$
(10)

where, G_{θ} is θ parameterized SPDE-Net, H is the FEM solution, τ_i is the stabilization parameter, u is the analytical solution and N is the number of training examples.

SPDE-Net

SPDE-Net

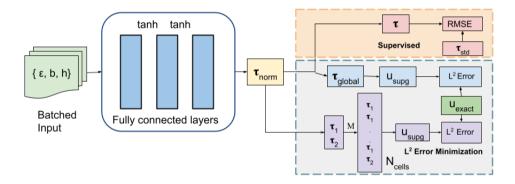


Figure: SPDE-Net: An end-to-end deep learning+FEM framework for solving SPDE

SPDE-Net

L^2 Error Minimization

- Global $\hat{\tau}$: Predict single τ for whole domain.
- Local $\hat{\tau}$: Predict 2 values, $\hat{\tau}_1$ and $\hat{\tau}_2$ for non-boundary and boundary layer regions. In this particular case, the boundary region is either near x = 0(for b < 0) or x = 1(for b > 0). For b > 0:

$$M = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ \vdots & \vdots \\ 0 & 1 \end{bmatrix}_{N_{\text{cells}},2}$$
(11)
$$\tau_{pred} = [\hat{\tau}_1(\theta), \hat{\tau}_2(\theta)]^T$$
(12)
$$\hat{\tau}_{local} = M \tau_{pred}$$
(13)

Evaluation Metrics

$$RMSE = \frac{\sqrt{\sum_{i=1}^{N} (\hat{\tau} - \tau)^2}}{N}$$

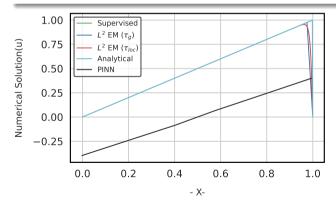
$$L^2 Error = \left(\int_{\Omega} (u_{supg}(\hat{\tau}) - u_{analytical})^2 dx \right)^{\frac{1}{2}}$$
(14)
(15)

Results

Qualitative Comparison

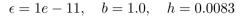
Test Case

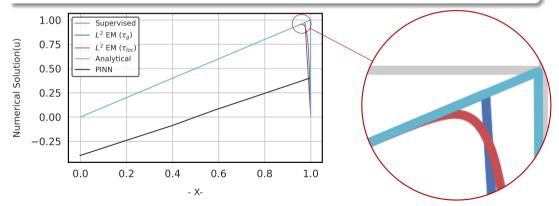
 $\epsilon = 1e - 11, \quad b = 1.0, \quad h = 0.0083$



Qualitative Comparison

Test Case





Performance Comparison

Table: Performance comparison of different techniques for validation and test dataset

	Validation data		Test data		
Technique	$ \hat{u}(\hat{\tau}) - u _{L^2(\Omega_h)}$	$ \hat{ au} - au _{L^2(\Omega_h)}$	$ \hat{u}(\hat{\tau}) - u _{L^2(\Omega_h)}$	$ \hat{\tau} - \tau _{L^2(\Omega_h)}$	
PINN	$8.11\mathrm{e}{-3}$	NA	$7.82\mathrm{e}{-3}$	NA	
Supervised	$5.13\mathrm{e}{-6}$	$2.79\mathrm{e}{-7}$	$7.88\mathrm{e}{-6}$	$3.72\mathrm{e}{-7}$	
$L^2 \ EM(au_{loc})$	$6.42\mathrm{e}{-5}$	NA	$1.70 \mathrm{e}{-4}$	NA	
$L^2 \; EM(au_g)$	$5.00\mathrm{e}{-6}$	$3.33\mathrm{e}{-6}$	$7.76\mathrm{e}{-6}$	$4.83 \mathrm{e}{-7}$	

• SPDE-Net: Neural Network-based prediction of stabilization parameter for SUPG technique Sangeeta Yadav, Sashikumaar Ganesan Proceedings of The 13th Asian Conference on Machine Learning, PMLR 157:268-283, 2021.

• THANK YOU