
1/14

Towards a Better Theoretical Understanding of
Independent Subnetwork Training

Egor Shulgin Peter Richtárik

King Abdullah University of Science and Technology (KAUST)
Thuwal, Saudi Arabia

ICML 2023 Workshop on Federated Learning and Analytics in Practice
July 2023



2/14

Problem formulation

min
x∈Rd

[
f(x) :=

1

n

n∑
i=1

fi(x)

]
(1)

n is the number of workers
each fi : Rd → R represents the loss of the model
parameterized by vector x ∈ Rd on the data of client i

Typical (Stochastic) Gradient Descent-type method for solving problem (1):

xk+1 = xk − γgk, gk =
1

n

n∑
i=1

gki (2)

γ > 0 is the stepsize
gki is a suitably constructed estimator of ∇fi(x

k)



2/14

Problem formulation

min
x∈Rd

[
f(x) :=

1

n

n∑
i=1

fi(x)

]
(1)

n is the number of workers
each fi : Rd → R represents the loss of the model
parameterized by vector x ∈ Rd on the data of client i

Typical (Stochastic) Gradient Descent-type method for solving problem (1):

xk+1 = xk − γgk, gk =
1

n

n∑
i=1

gki (2)

γ > 0 is the stepsize
gki is a suitably constructed estimator of ∇fi(x

k)



3/14

Standard distributed learning setting 1
n

∑n
i=1 fi(x) → min

x∈Rd

Distributed Gradient Descent architecture example (based on Dean et al., 2012)

Allows to employ data parallelism to speed up training.



4/14

Data + Model parallelism

Distributed Gradient Descent with sparse models

1. Sample parameters / Decompose the model



4/14

Data + Model parallelism

Distributed Gradient Descent with sparse models

2. Perform local computations w.r.t. submodels



4/14

Data + Model parallelism

Distributed Gradient Descent with sparse models

3. Sample new parameters / Decompose the model



4/14

Data + Model parallelism

Distributed Gradient Descent with sparse models

4. Perform local computations w.r.t. new submodels



5/14

Independent Subnetwork Training (IST) [Yuan et al., 2022]

Schematic depiction of a NN trained with IST across two nodes (source: Yuan et al., 2022)

Efficiently combines data and model parallelism.



6/14

Brief history of IST

Originally suggested in 2019 by Yuan et al. (2022) for networks with
fully connected layers.
Later extended to ResNets (Dun et al., 2022) and Graph
architectures (Wolfe et al., 2021).
Analyzed for overparameterized single hidden layer NNs with ReLU
activations (Liao and Kyrillidis, 2022).
Expanded to the federated setting via an asynchronous distributed
dropout technique (Dun et al., 2023).

IST showed impressive empirical performance (source: Yuan et al., 2022)



7/14

Modeling IST via sketching

Submodel computations can be represented by using sketches

gki := Ck
i∇fi(C

k
i x

k), (3)

for symmetric positive semi-definite matrices Ck
i ∈ Rd×d (e.g. Ci = eie

⊤
i ,

ei – basis vectors). Then IST (with 1 GD step) can be modeled as

xk+1 =
1

n

n∑
i=1

[
Ck

i x
k − γCk

i∇fi(C
k
i x

k)
]
. (4)

Permutation Sketch (for n = d) [Szlendak, Tyurin, and Richtárik, 2022]

Let π = (π1, . . . , πd) be a random permutation of [d] := (1, . . . , d). Then
for each i ∈ [n], define Perm-q operator

Ci := n ·
qi∑

j=q(i−1)+1

eπje
⊤
πj
. (5)



7/14

Modeling IST via sketching

Submodel computations can be represented by using sketches

gki := Ck
i∇fi(C

k
i x

k), (3)

for symmetric positive semi-definite matrices Ck
i ∈ Rd×d (e.g. Ci = eie

⊤
i ,

ei – basis vectors). Then IST (with 1 GD step) can be modeled as

xk+1 =
1

n

n∑
i=1

[
Ck

i x
k − γCk

i∇fi(C
k
i x

k)
]
. (4)

Permutation Sketch (for n = d) [Szlendak, Tyurin, and Richtárik, 2022]

Let π = (π1, . . . , πd) be a random permutation of [d] := (1, . . . , d). Then
for each i ∈ [n], define Perm-q operator

Ci := n ·
qi∑

j=q(i−1)+1

eπje
⊤
πj
. (5)



8/14

Challenges in analysis

Gradient estimator is biased even if C is unbiased unlike for Compressed
Gradient Descent-type methods

E [∇f(Cx)] ̸= ∇f(x) = E [C∇f(x)] = E [C]∇f(x). (6)

Previous works rely on bounded expected stochastic gradient norm:

E
[
∥∇f(Cx)∥2

]
≤ G (7)

and may not hold, even for quadratic functions

f(x) = x⊤Ax, (8)

as ∥∇f(x)∥ = ∥Ax∥ is unbounded for x ∈ Rd.



8/14

Challenges in analysis

Gradient estimator is biased even if C is unbiased unlike for Compressed
Gradient Descent-type methods

E [∇f(Cx)] ̸= ∇f(x) = E [C∇f(x)] = E [C]∇f(x). (6)

Previous works rely on bounded expected stochastic gradient norm:

E
[
∥∇f(Cx)∥2

]
≤ G (7)

and may not hold, even for quadratic functions

f(x) = x⊤Ax, (8)

as ∥∇f(x)∥ = ∥Ax∥ is unbounded for x ∈ Rd.



9/14

Simplifications taken

1 Every node i computes full gradient at the submodel Ci∇fi(Cix
k)

2 Nodes perform one descent step (or just gradient computation)
3 Special case of a convex symmetric quadratic model as a loss function

f(x) =
1

n

n∑
i=1

fi(x), fi(x) ≡
1

2
x⊤Lix− x⊤ bi . (9)

In this instance, the gradient estimator takes the form

gk =
1

n

n∑
i=1

gki =
1

n

n∑
i=1

Ck
i

(
LiC

k
i x

k − bi

)
= B

k
xk −Cb , (10)

where B
k
:= 1

n

∑n
i=1C

k
iLiC

k
i and Cb = 1

n

∑n
i=1C

k
i bi.



9/14

Simplifications taken

1 Every node i computes full gradient at the submodel Ci∇fi(Cix
k)

2 Nodes perform one descent step (or just gradient computation)
3 Special case of a convex symmetric quadratic model as a loss function

f(x) =
1

n

n∑
i=1

fi(x), fi(x) ≡
1

2
x⊤Lix− x⊤ bi . (9)

In this instance, the gradient estimator takes the form

gk =
1

n

n∑
i=1

gki =
1

n

n∑
i=1

Ck
i

(
LiC

k
i x

k − bi

)
= B

k
xk −Cb , (10)

where B
k
:= 1

n

∑n
i=1C

k
iLiC

k
i and Cb = 1

n

∑n
i=1C

k
i bi.



10/14

Preconditioned permutation sparsification

Gradient estimator reminder

gk =
1

n

n∑
i=1

Ck
iLiC

k
i x

k − 1

n

n∑
i=1

Ck
i bi = B

k
xk −Cb . (11)

Perm-1 modification

C̃i :=
√

n/ [Li]πi,πi
eπie

⊤
πi
. (12)

In this case
E
[
C̃iLiC̃i

]
= I, E

[
B

k
]
= I (13)

and

E
[
Cb

]
=

1√
n

1

n

n∑
i=1

D
− 1

2
i bi . (14)



10/14

Preconditioned permutation sparsification

Gradient estimator reminder

gk =
1

n

n∑
i=1

Ck
iLiC

k
i x

k − 1

n

n∑
i=1

Ck
i bi = B

k
xk −Cb . (11)

Perm-1 modification

C̃i :=
√

n/ [Li]πi,πi
eπie

⊤
πi
. (12)

In this case
E
[
C̃iLiC̃i

]
= I, E

[
B

k
]
= I (13)

and

E
[
Cb

]
=

1√
n

1

n

n∑
i=1

D
− 1

2
i bi . (14)



11/14

The resulting gradient estimator

gk = B
k
xk −Cb (15)

Combined with modified preconditioned Perm-1

E
[
gk
]

= xk − 1√
n

1

n

n∑
i=1

D
− 1

2
i bi (16)

= L
−1∇f(xk) + L

−1
b− 1√

n
D̃b︸ ︷︷ ︸

h

, (17)

where D̃b := 1
n

∑n
i=1D

− 1
2

i bi.



12/14

One main result

Convergence of IST to neighborhood

Assume that for every Di := Diag(Li) matrices D
− 1

2
i exist, and

heterogeneity is bounded as

E
[∥∥gk − E

[
gk
]∥∥2

L

]
≤ σ2. (18)

Then, for the step size chosen as 0 < γ ≤ 1/2−β
β+1/2 , for β ∈ (0, 1/2), the

iterates of IST satisfy

1

K

K−1∑
k=0

E
[∥∥∥∇f(xk)

∥∥∥2
L
−1

]
≤

2
(
f(x0)− E

[
f(xK)

])
γK

(19)

+
(
2β−1 (1− γ) + γ

)
∥h∥2

L
+ γσ2.



13/14

Limitations of prior works

Originally Yuan et al. (2022) performed convergence analysis using the
framework of GD with compressed iterates (Khaled and Richtárik, 2019).

Setting: single-node stochastic case
⇒ heterogeneity effect not captured.
Assumption on sparsification parameter q:

d

q
− 1 ≲ κ−2 ⇒ q ≈ d (20)

Assumption of Lipschitz continuity, which implies “bounded gradient”

∥∇f(x)∥2 ≤ G (21)

Notation: κ – analogue for condition number of the optimized function.



14/14

Conclusions and future work

Takeaways
It is possible to precisely analyze IST in a simplified setting.
Even for quadratics naive IST may not converge to exact solution.

Future work
Extensions to settings like cross-device federated learning.
Generalizations to non-quadratics.
Algorithmic modifications of the original IST.

For more details, please refer to the paper arXiv:2306.16484

Any questions?

https://arxiv.org/abs/2306.16484


14/14

Conclusions and future work

Takeaways
It is possible to precisely analyze IST in a simplified setting.
Even for quadratics naive IST may not converge to exact solution.

Future work
Extensions to settings like cross-device federated learning.
Generalizations to non-quadratics.
Algorithmic modifications of the original IST.

For more details, please refer to the paper arXiv:2306.16484

Any questions?

https://arxiv.org/abs/2306.16484


14/14

References

Dean, Jeffrey et al. (2012). “Large Scale Distributed Deep Networks”. In: Advances in Neural
Information Processing Systems 25.

Dun, Chen et al. (2022). “ResIST: Layer-wise decomposition of ResNets for distributed
training”. In: Uncertainty in Artificial Intelligence. PMLR, pp. 610–620.

Dun, Chen et al. (2023). “Efficient and Light-Weight Federated Learning via Asynchronous
Distributed Dropout”. In: International Conference on Artificial Intelligence and Statistics.
PMLR, pp. 6630–6660.

Khaled, Ahmed and Peter Richtárik (2019). “Gradient descent with compressed iterates”. In:
arXiv preprint arXiv:1909.04716.

Liao, Fangshuo and Anastasios Kyrillidis (2022). “On the Convergence of Shallow Neural
Network Training with Randomly Masked Neurons”. In: Transactions on Machine Learning
Research. URL: https://openreview.net/forum?id=e7mYYMSyZH.

Szlendak, Rafał, Alexander Tyurin, and Peter Richtárik (2022). “Permutation Compressors for
Provably Faster Distributed Nonconvex Optimization”. In: International Conference on
Learning Representations. URL: https://openreview.net/forum?id=GugZ5DzzAu.

Wolfe, Cameron R et al. (2021). “GIST: Distributed training for large-scale graph
convolutional networks”. In: arXiv preprint arXiv:2102.10424.

Yuan, Binhang et al. (2022). “Distributed learning of fully connected neural networks using
independent subnet training”. In: Proceedings of the VLDB Endowment 15.8, pp. 1581–1590.

https://openreview.net/forum?id=e7mYYMSyZH
https://openreview.net/forum?id=GugZ5DzzAu


14/14

Algorithm Description (Supplementary Slide 1)

Algorithm 1 Distributed Submodel (Stochastic) Gradient Descent

1: Parameters: step size γ > 0; sketches C1, . . . ,Cn; model x0 ∈ Rd

2: for k = 0, 1, 2 . . . do
3: Select submodels wk

i = Ck
i x

k for i ∈ [n] and broadcast to all nodes
4: for i = 1, . . . , n in parallel do
5: Compute local (stochastic) gradient w.r.t. submodel: Ck

i∇fi(w
k
i )

6: Take (multiple) gradient descent step z+i = wk
i − γCk

i∇fi(w
k
i )

7: Send z+i to the server
8: end for
9: Aggregate/merge received submodels: xk+1 = 1

n

∑n
i=1 z

+
i

10: end for



14/14

Results in the interpolation case: bi = 0

Denote L = 1
n

∑n
i=1 Li ≻ 0.

Stationary point convergence for general sketches
If

W :=
1

2
E
[
LB

k
+B

k
L
]
⪰ 0, (22)

and there exists a constant θ > 0:

E
[
B

k
LB

k
]
⪯ θW, (23)

and the step size is chosen as 0 < γ ≤ 1
θ , the iterates satisfy

1

K

K−1∑
k=0

E
[∥∥∥∇f(xk)

∥∥∥2
L
−1

WL
−1

]
≤

2
(
f(x0)− E

[
f(xK)

])
γK

. (24)



14/14

Special case I: Gradient Descent

Consider Ci ≡ I. Then B
k
= L and for step size

γ = 1/λmax(L) (25)

the iterates satisfy

1

K

K−1∑
k=0

∥∥∥∇f(xk)
∥∥∥2
I
≤

2λmax(L)
(
f(x0)− f(xK)

)
K

, (26)

which matches O(1/K) rate of Gradient Descent in the non-convex setting.



14/14

Special case II: IST as Perm-1

Consider Ck
i = neπk

i
e⊤
πk
i
. Then E

[
Ck

iLiC
k
i

]
= nDiag(Li) and

E
[
B

k
]
=

1

n

n∑
i=1

nDiag(Li) =

n∑
i=1

Di = nD 1. (27)

Then inequality E
[
B

k
LB

k
]
⪯ θW leads to

nDLD ⪯ θ

2

(
LD+DL

)
. (28)



14/14

Preconditioning for homogeneous problem fi(x) ≡ 1
2x

⊤Lx

Define D = Diag(L). Then, the original problem can be converted to

fi(D
− 1

2x) =
1

2
x⊤

(
D− 1

2LD− 1
2

)
︸ ︷︷ ︸

L̃

x. (29)

Combined with Perm-1 sketches

E
[
B

k
]
= E

[
1

n

n∑
i=1

Ci L̃Ci

]
= nDiag(L̃) = nI. (30)

The resulting convergence guarantee is

1

K

K−1∑
k=0

E
[∥∥∥∇f(xk)

∥∥∥2
I

]
≤

2λmax(L̃)
(
f(x0)− E

[
f(xK)

])
K

. (31)



14/14

Preconditioning for homogeneous problem fi(x) ≡ 1
2x

⊤Lx

Define D = Diag(L). Then, the original problem can be converted to

fi(D
− 1

2x) =
1

2
x⊤

(
D− 1

2LD− 1
2

)
︸ ︷︷ ︸

L̃

x. (29)

Combined with Perm-1 sketches

E
[
B

k
]
= E

[
1

n

n∑
i=1

Ci L̃Ci

]
= nDiag(L̃) = nI. (30)

The resulting convergence guarantee is

1

K

K−1∑
k=0

E
[∥∥∥∇f(xk)

∥∥∥2
I

]
≤

2λmax(L̃)
(
f(x0)− E

[
f(xK)

])
K

. (31)



14/14

Heterogeneous sketch preconditioning

Modification of Perm-1:

C̃i :=
√

n/ [Li]πi,πi
eπie

⊤
πi
. (32)

In this case
E
[
C̃iLiC̃i

]
= I and E

[
B

k
]
= I (33)

Convergence guarantee

1

K

K−1∑
k=0

E
[∥∥∥∇f(xk)

∥∥∥2
I

]
≤

2λmax(L)
(
f(x0)− E

[
f(xK)

])
K

. (34)


	References

