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Proposed Partial Sharing Algorithm: pFedFrz
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Updates local model in two steps
Key Point (D: Update only the personalized part — Increase compatibility between personalized-shared parts
@: Update both personalized and shared parts — Generate a local model optimized to local data

Simulation Results
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Comparison The proposed solution outperforms other solutions in non-l.1.D. settings

Conclusion

 \We propose pFedFrz for local update in partial sharing federated learning that trains local model in two steps
 The proposed solution generates local models optimized to individual datasets in non-1.1.D. setting
 The proposed solution builds robust local models against attackers
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