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Difference of submodular minimization

 and  are both:


• submodular: 





• normalized: 

G H

G(S ∪ e) − G(S) ≥ G(T ∪ {e}) − G(T) for all S ⊆ T

G(∅) = 0

minS⊆VF(S) := G(S) − H(S)

S T



Motivation
• Any set function can be expressed in this form (but computing it can be 

expensive) [Iyer & Bilmes, 2012]. 


• Many problems naturally have this form.


• Very hard even if decomposition provided: No sub-exponential algorithm with 
constant factor approximation [Iyer & Bilmes, 2012]

Speech corpus selection
Feature selection selection

Image sources: [Lin & Bilmes, 2011] and [Remeseiro & Bolon-Canedo, 2019] 



Existing approaches

• SubSup, SupSub, ModMod [Iyer & Bilmes, 2012]: converge to a local 
minimum


.


• Projected gradient method (PGM) [El Halabi & Jegelka, 2020]: optimal 
approximation guarantee when F is approximately submodular.

F(X) ≤ F(X ∪ i) for all i ∈ V∖X,  and F(X) ≤ F(X∖i) for all i ∈ X



Proposed approach

Solve equivalent continuous problem: 


•  are the Lovász extensions of F, G, and H


•  are convex functions with easy to compute subgradients


• Given a minimizer  of , we can obtain a minimizer of F by rounding

fL, gL, and hL

gLand hL

x* fL

minS⊆VF(S) := G(S) − H(S)

minS⊆VF(S) = minx∈[0,1]d fL(x) := gL(x) − hL(x) ( |V | = d)



Proposed approach: DC Algorithm

DC algorithm (Pham Dinh & Le Thi, 1997): 

 (easy to compute)


 (convex minimization)


Repeat until convergence   


If  is integral and : DCA is equivalent to SubSup

yk ∈ ∂hL(xk) + ρxk

xk+1 ∈ ∂ (gL + δ[0,1]d+
ρ
2 ∥ ⋅ ∥2)

*
(yk) = argmin

x∈[0,1]d
gL(x)+ ρ

2 ∥x − yk /ρ∥2

fL(xk) − fL(xk+1) ≤ ϵ

xk ρ = 0

minx∈[0,1]d fL(x) := gL(x)+ ρ
2 ∥x∥2 − (hL(x)+ ρ

2 ∥x∥2)



Theoretical guarantees
• If  is integral or we round at each iteration (necessary if ): 


• DCA converges to a local minimum with rate  (similar to existing 
methods)


• CDCA (variant of DCA) converges to a strong local minimum with rate  
but requires solving a concave minimization (can obtain stationary point via FW)





• Effect of regularization: convergence in iterates, slower convergence rate, faster 
convergence rate for subproblem

xk ρ > 0

O(1/k)

O(1/k)

for all X′￼ ⊆ X and X′￼ ⊇ X, F(X) ≤ F(X′￼)
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Special case: F is close to submodular; PGM, DCA and 
CDCA achieve optimal approximation guarantee here.



Thank you! 

Paper: https://arxiv.org/abs/2305.11046


Code: https://github.com/samsungsailmontreal/difference-submodular-min


https://arxiv.org/abs/2305.11046
https://github.com/samsungsailmontreal/difference-submodular-min
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