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Difference of submodular minimization

ming-yF(S) := G(S) — H(S)

(G and H are both:

e submodular:

GSUe)—GWS) >2G(Tule})—G(T)forall SCT

e normalized: G(@) = 0



Motivation

* Any set function can be expressed in this form (but computing it can be
expensive) [lyer & Bilmes, 2012].

 Many problems naturally have this form.
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* \Very hard even if decomposition provided: No sub-exponential algorithm with
constant factor approximation [lyer & Bilmes, 2012]

Image sources: [Lin & Bilmes, 2011] and [Remeseiro & Bolon-Canedo, 2019]



Existing approaches

e SubSup, SupSub, ModMod [lyer & Bilmes, 2012]: converge to a local
minimum

FX)<FXuUi)foralli € V\X, and F(X) < F(X\i) foralli € X.

* Projected gradient method (PGM) [El Halabi & Jegelka, 2020]: optimal
approximation guarantee when F is approximately submodular.



Proposed approach L

ming-yF(S) := G(S) — H(S) *

0

Solve equivalent continuous problem:

mingeyF(S) = min,e 1ufy () = g, — () (|V] =d)

* f1,8;,and h; are the Lovasz extensions of F, G, and H
» grand h; are convex functions with easy to compute subgradients

» Given a minimizer x* of f;, we can obtain a minimizer of F by rounding



Proposed approach: DC Algorithm

min,eo 1afp (%) 1= g )+5 x> — (h )+ 1x]1)

DC algorithm (Pham Dinh & Le Thi, 1997):

vk e ()hL(xk) + px* (easy to compute)

K
xl e o (gL + 5[0,1]51"‘%” - Hz) (y¥) = argmin gL(x)+§Hx — v*/p||? (convex minimization)
xe[0,1]¢

Repeat until convergence fL(xk) — fL(xk+1) <e€

If x* is integral and p = 0: DCA is equivalent to SubSup



Theoretical guarantees

e If xNis integral or we round at each iteration (necessary if p > 0):

« DCA converges to a local minimum with rate O(1/k) (similar to existing
methods)

e CDCA (variant of DCA) converges to a strong local minimum with rate O(1/k)
but requires solving a concave minimization (can obtain stationary point via FW)

forall X’ C Xand X' D X, F(X) < F(X')

o Effect of regularization: convergence in iterates, slower convergence rate, faster
convergence rate for subproblem



Empirical results
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Special case: F is close to submodular; PGM, DCA and
CDCA achieve optimal approximation guarantee here.



Thank you!

Paper: https://arxiv.org/abs/2305.11046

Code: https://github.com/samsungsailmontreal/difference-submodular-min



https://arxiv.org/abs/2305.11046
https://github.com/samsungsailmontreal/difference-submodular-min
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