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OBackground
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« Semi-Supervised Learning

Machine learning relies on a large amount of labeled data.
Semi-supervised learning can effectively utilize unlabeled data.

It has a limited scope and relies on the same distribution between labeled and
unlabeled data.

There is a risk of significant performance degradation in real-world applications.

» Robust Semi-Supervised Learning

Utilizing a large amount of unlabeled data that has a different distribution from the
current labeled data for learning.

The goal is to ensure that the semi-supervised algorithm does not perform too poorly
in real-world applications.

This extends the applicability of classical semi-supervised learning.
It reduces the risk associated with using semi-supervised learning algorithms.
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OBackground

e Inconsistent Distributions
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— We can only observe that the feature distributions of unlabeled and labeled data

are inconsistent.

— Inconsistent feature distributions are equivalent to a combination of inconsistent
class distributions and inconsistent intra-class feature distributions.

— Inconsistent distributions between labeled and unlabeled data lead to low quality

of pseudo-labels.

— Inconsistent distributions between unlabeled data and target data result in poor

performance and weak robustness of the learner.
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L Theoretical Research

» Generalization Error
— Bias of pseudo-label predictions.
— Variance of pseudo-label predictions.

— Distribution distance caused by pseudo-label
predictions.

— Bias of target predictions.
— Variance of target predictions.
Distribution distance caused by target predictions.

. Optlmlzatlon Object

— Bias and distribution distance of pseudo-label
predictions.

— Bias and distribution distance of target predictions

— Objective conflict.
— Objective can be decoupled.
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Theorem 3.4. Assuming that the probabilities of the pseudo-
label predictor making wrong predictions for each sample
are equal without considering the difference among them,
for any target predictor f € F, pseudo-label predictor
heH, 0<6;<1,0<d; <1and0 < d3 <1, with the
probability of at least (1 — §1)(1 — §2)(1 — d3):
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where E‘( I, ﬁﬁ) is the weighted disagreement rate between
the noisy pseudo-labels and the prediction results of f on
the unlabeled dataset Dy;.
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OAnalysis of Semi-Supervised
Learning Algorithms

» Pseudo-labeling

— The pseudo-label predictor is a combination of target predictor and mapping function.
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Vfe F.h=pof e

« Consistency

— The pseudo-label predictor is a combination of augmentation and target predictor.

Vi € F,h = foa € H.

« Mixed Methods

— The pseudo-label predictor is a combination of augmentation, target predictor and mapping function.
VfeF,h=pofoaecH.

* Three Shortcomings

— The coupling of pseudo-label predictor and target predictor leads to conflicting optimization
objectives.

— The distribution bias between labeled and unlabeled data leads to low quality of pseudo-labels.
— Sample weights cannot effectively align the distribution of unlabeled data with the target distribution.
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OAlgorithm Framework

 Bidirectional Adaptation Algorithm
— Decoupling the pseudo-label predictor and target predictor avoids optimization conflicts.
— Improving the accuracy of pseudo-labels through domain adaptation.

— Aligning the target distribution by weighting unlabeled samples.
 Aligning p(x|y) with intra-class weights.
 Aligning p(y) with inter-class weights.
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OEXxperiments

Theoretical Arguments

Performance Robustness
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Table 3. Experiments on VisDA-2017 with 150 labels, 300 labels and 600 labels.
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Methods 150 labels 300 labels 600 labels

S/R R/S S/R R/S S/R R/S
Supervised 85.33+1.54 7850+0.68 89.64+0.73 81.81+0.62 92.20+£0.45 84.13+0.36
Mean Teacher 84.15+1.08 73.68 £1.00 86.90 4+ 0.61 76.90 046 89.05+£0.48 79.86 £0.30
FixMatch 7846 +4.15 67.10+9.46 82.88+0.85 T1.744+045 87.68+1.15 79.54+1.88
FlexMatch 83.43+1.74 6790+1.77 88.09+053 7517+1.34 90.11+1.09 79.284+0.38
UASD 85.58£1.55 78594041 89.58+0.79 R1.82+0.68 92.29+0.45 84.04+0.31
CAFA 83.95+1.79 72894+1.03 87.81+047 7648+0.72 89.84+0.62 78.63+0.44
Ours 85.92+1.16 79.154+0.39 89.85+0.71 82.2740.60 92.46+0.38 84.28+0.36
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Thanks!
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