
Adversarial Policies Beat 
Superhuman Go AIs
Tony Wang*         Adam Gleave*         Tom Tseng         Kellin Pelrine

Nora Belrose         Joseph Miller         Michael Dennis         Yawen Duan

Viktor Pogrebniak         Sergey Levine        Stuart Russell

goattack.far.aitwang6@mit.edu

Hi, my name is Tony and I want to teach you about how adversarial policies beat 
superhuman Go AIs.
[click]

http://goattack.far.ai


Go is an ancient Chinese board game invented over 2500 years ago. Two players 
take turns placing black and white stones on a square board, trying to surround 
territory, and kill each other’s stones. At the end of the game, whoever controls more 
of the board wins.
[click]



AlphaGo def. Lee Sedol (4-1)

The game you just saw was part of a match between Lee Sedol and the AI AlphaGo. 
Lee (on the right here) was one of the strongest humans to ever play the game. But, 
by leveraging deep neural networks, AlphaGo was able to pull off an upset, and beat 
Lee 4-1.
[click]



(2023)≪

~99.9995%
winrate

AlphaGo 
(2016)<

AlphaGo showed, that deep neural networks could be better at Go than any human. 
But progress did not stop here and even more powerful systems were eventually 
developed. [click] For example KataGo, which is currently the strongest open-source 
Go AI, can beat AlphaGo roughly 99.9995% of the time. Systems like KataGo show 
that at least in certain domains, AI systems can far surpass human capabilities.

Okay, so that’s some background on Go and Go AIs. [click]

Sources:
1. AlphaGo vs. AlphaZero (https://www.nature.com/articles/nature24270), 5185 - 

3739 = 1446 => 99.97% winrate
2. From our paper, AlphaZero_s800 has 3813 elo of goratings.org. cp505_s1 has 

2738 elo on goratings.org. cp505_s800 has 4500 elo on goratings.org. So 700 
elo gap => 98% winrate.

3. From reddit.com/r/baduk/comments/hma3nx/unified_elo_rating_for_ais/, 
AlphaZero is 2065 - 1330 = 735 elo weaker that cp505.

https://www.nature.com/articles/nature24270
https://www.wolframalpha.com/input?i=1+-+1+%2F+%281+%2B+10%5E%28700%2F400%29%29
https://www.reddit.com/r/baduk/comments/hma3nx/unified_elo_rating_for_ais/


Do current superhuman AI 
systems have good 

worst-case performance?

No, for Go AIs.

The key question we tried to answer with our project is this, do current superhuman AI 
systems have good worst-case performance? The reason we care about this, is that if 
we deploy AI systems in high stakes settings (for example, as self-driving cars, 
automated traders, or autonomous weapons systems), it doesn’t matter if our systems 
are superhuman most of the time, if they can still fail catastrophically some of the 
time.

We attack Go AIs to get at this question. And, at least in this domain, our answer is 
no. Let me show you why.



The Cyclic-Exploit

KataGo AI

Adversary

Existing "superhuman” Go AIs have a hidden weakness—they don’t understand cyclic 
shapes. If you get the AI to make a cyclic-shape, it thinks the shape is invulnerable 
and won’t defend it even though it can be killed. Here’s the superhuman KataGo 
making a circle as black. Because KataGo doesn’t realize its circle can be killed, an 
adversary AI we trained can slowly smother the circle from the inside and outside. 
Let’s see this action.
[click]



The Cyclic-Exploit

KataGo AI

Adversary

So all of the black stones marked with an X here will eventually die. And even though 
this is an adversary AI playing right now, this strategy is actually simple enough for a 
human to pull it off manually.
[click]



How did we discover this exploit? Well, we did so by training an adversary AI to defeat 
KataGo. [click]



Our adversary has a special ability. Namely, it can simulate the victim’s behavior when 
it searches over future moves.



AdvNet AdvNet + adversarial tree-search

≫

AdvNet++

Imitation training

Adversarial AlphaZero

Generate data vs. 
KataGo

To train our adversary, we use an adversarial variant of the AlphaZero algorithm. 
Here’s how it works. [click] We start with a randomly initialized adversary neural 
network [click] Next, we augment this network with an adversarial variant of 
Monte-Carlo Tree Search. Tree-search is a policy improvement operator, meaning the 
network with tree search is a stronger adversary than the network alone. This 
adversarial tree-search is also where the adversary simulates possible victim 
responses. [click] We then pit our search-augmented adversary against KataGo, 
generating a dataset of behavior. [click] Finally, we train the adversary network to 
mimic the behavior of the search-augmented adversary. This imitation training yields a 
slightly stronger network.

Repeating this process, we eventually get an adversary that is able to reliably defeat 
KataGo via the cyclic-exploit I showed previously.



Here’s what running our adversarial alphazero algorithm looks like.
On the horizontal axis, we have the number of gradient descent steps performed on 
our adversary.
The different colored lines represent the win-rate of our adversary against different 
versions of KataGo of varying strength.
We see that over the course of our training, our adversary goes from losing to 
winning.
And to give you a sense of scale, the entire x-axis encompasses roughly 2000 V100 
GPU days.

The vertical dashed lines here actually denote a curriculum, which is an important 
detail.
We couldn’t just train our adversary against the strongest version of KataGo right off 
the bat,
because it would lose every game and we would have no training signal.
So instead, we started our training against really weak versions of KataGo,
and only once we achieve a sufficiently high win-rate, do we move on to a slightly 
stronger adversary.
We were able to do this in part because KataGo released a full training checkpoint 
history of its networks, ranging from very weak to very strong.



AdvNet AdvNet + adversarial tree-search

≫

AdvNet++

Imitation training

Adversarial AlphaZero

Generate data vs. 
KataGo

Okay now I want to loop back to our adversarial AlphaZero training procedure, and 
give you a bit more detail on how we do our adversarial tree search.



Vanilla 
MCTS

Adversarial 
MCTS

So in regular Monte-Carlo tree search, on the left here, moves are sampled from a 
single policy network, and AI pretends that it is its own opponent. We developed an 
adversarial version of Monte-Carlo tree search, on the right, where the adversary 
simulates the opponent when it is the opponent’s turn. 



Vanilla 
MCTS

Adversarial 
MCTS

Approximate
Fast

Accurate 
Slow

We actually have two variants of our adversarial MCTS.

The first variant is an approximate but fast version: we approximate the victim with 
just its neural network policy.
This is an approximation, because in reality the victim is also doing tree search.

The second variant is accurate but slow: we actually recursively simulate the victim 
tree search.
This is much more accurate and actually results in a stronger adversary, but is 
computationally impractical. 



Okay, so finally, I want to talk a little bit about how to defend against our adversarial 
exploit.

After publishing an earlier version of our work late last year, we talked with the creator 
of KataGo, who actually started to do some adversarial training on KataGo to make it 
immune to our exploit. And as we see on the graph here, after adversarial training 
starts, KataGO gradually became immune to our adversary.

[click[
However, we show that this defense is incomplete. We took the defended version of 
KataGo, and finetuned our adversaries to attack to updated version of KataGo. And 
on the right here, we see that our adversary once again learns to defeat KataGo, and 
we checked that it did so actually via the same cyclic exploit.
So defense is still an open problem.

published adversaries. However, we show this defense is incomplete—re-attacking 
KataGo yields adversaries that are still able to win via the cyclic exploit. So defense is 
still an open question.



“Superhuman” Go AIs have bad 
worst-case performance.

Automated red-teaming is
a powerful technique.

In summary, we showed what were previously thought to be superhuman Go AIs, 
actually have pretty bad worst-case performance.
And discovered these vulnerabilities via automated red-teaming, that is, we trained 
another AI system to find the exploit.

Our main takeaway, is that automated red-teaming is pretty powerful technique. 
AlphaGo, AlphaZero, and their successors, have been known the world for 6+ years 
now. However, it wasn’t until we use automated red-teaming that we managed to 
discover the exploit I showed today. We think that powerful AI systems of the future 
may also have failure modes that are hard to discover without the assistance of AI.

Nir: Would go back to the big question. The day is coming where humans will not 
be able to test systems rigorously. We’re approaching superhuman systems. How 
much can we trust these systems? Should also add a summary of what we did. These 
points are too low level. 2 is the main point. Maybe add on: we don’t know how to 
defend.



Tom Tseng Kellin Pelrine Nora BelroseAdam Gleave Joseph Miller

Michael Dennis Yawen Duan Viktor Pogrebniak Sergey Levine Stuart Russell

Website: goattack.far.ai

Paper: 

arxiv.org/abs/2211.00241

Poster tomorrow at 

11am (#300)

This work was done in collaboration with all these other fantastic folks on the screen. 
In particular, Adam and Kellin are here at the conference as well, so feel free to to flag 
any of us down if you have questions. For more information, check out our website 
and paper, and do swing by our poster tomorrow (we’re number 300).

http://goattack.far.ai
https://arxiv.org/abs/2211.00241

