Subsample Ridge Ensembles: Equivalences and Generalized Cross-Validation

Jin-Hong Du^{1*} Pratik Patil^{2*} Arun Kumar Kuchibhotla¹

¹Department of Statistics and Data Science, Carnegie Mellon University

²Department of Statistics, University of California, Berkeley

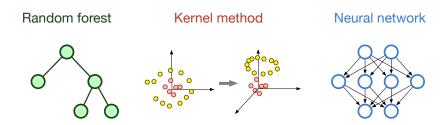
*equal contribution

July 2023

Carnegie Mellon University

Over-parameterization and regularization

► In the big data era, the success of machine learning and deep learning methods typically have much more parameters than the training samples.



Optimizing such over-parameterized models requires different types of regularization.

Explicit and implicit regularization

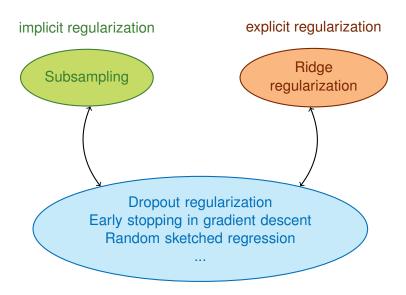
implicit regularization

Subsampling

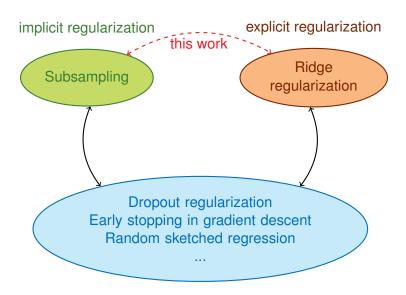
explicit regularization

Ridge regularization

Explicit and implicit regularization



Explicit and implicit regularization



Ridge ensembles

▶ Ridge estimator: Let $\mathcal{D}_n = \{(x_j, y_j) \in \mathbb{R}^p \times \mathbb{R} : j \in [n]\}$ denote a dataset. The ridge estimator fitted on subsampled dataset \mathcal{D}_I with $I \subseteq [n], |I| = k$ is defined as:

$$\widehat{\boldsymbol{\beta}}_k^{\lambda}(\mathcal{D}_I) = \operatorname*{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} \frac{1}{k} \sum_{j \in I} (y_j - \boldsymbol{x}_j^{\top} \boldsymbol{\beta})^2 + \lambda \|\boldsymbol{\beta}\|_2^2.$$

Ridge ensembles

▶ Ridge estimator: Let $\mathcal{D}_n = \{(x_j, y_j) \in \mathbb{R}^p \times \mathbb{R} : j \in [n]\}$ denote a dataset. The ridge estimator fitted on subsampled dataset \mathcal{D}_I with $I \subseteq [n], |I| = k$ is defined as:

$$\widehat{\boldsymbol{\beta}}_k^{\lambda}(\mathcal{D}_I) = \operatorname*{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} \frac{1}{k} \sum_{j \in I} (y_j - \boldsymbol{x}_j^{\top} \boldsymbol{\beta})^2 + \lambda \|\boldsymbol{\beta}\|_2^2.$$

► Ensemble ridge estimator:

$$\widetilde{eta}_{k,m{M}}^{\lambda}(\mathcal{D}_n;\{I_\ell\}_{\ell=1}^M):=rac{1}{M}\sum_{\ell\in[m{M}]}\widehat{eta}_k^{\lambda}(\mathcal{D}_{I_\ell}),$$

with $I_1, \ldots, I_M \sim \mathcal{I}_k := \{\{i_1, \ldots, i_k\} : 1 \leq i_1 < \ldots < i_k \leq n\}$. The *full-ensemble* ridge estimator is defined by letting $M \to \infty$.

Prediction risk

Conditional prediction risk: The goal is to quantify and estimate the prediction risk:

$$R_{k,M}^{\lambda} := \mathbb{E}_{(\boldsymbol{x},y)}[(y - \boldsymbol{x}^{\top} \widetilde{\beta}_{k,M}^{\lambda})^{2} \mid \mathcal{D}_{n}, \{I_{\ell}\}_{\ell=1}^{M}], \tag{1}$$

under proportional asymptotics where $n,p,k\to\infty$, $p/n\to\phi$ and $p/k\to\phi_s$. Here, ϕ and ϕ_s are the *data* and *subsample* aspect ratios, respectively.

Prediction risk

Conditional prediction risk: The goal is to quantify and estimate the prediction risk:

$$R_{k,M}^{\lambda} := \mathbb{E}_{(\boldsymbol{x},y)}[(y - \boldsymbol{x}^{\top} \widetilde{\beta}_{k,M}^{\lambda})^{2} \mid \mathcal{D}_{n}, \{I_{\ell}\}_{\ell=1}^{M}], \tag{1}$$

under proportional asymptotics where $n,p,k\to\infty$, $p/n\to\phi$ and $p/k\to\phi_s$. Here, ϕ and ϕ_s are the *data* and *subsample* aspect ratios, respectively.

Focusing on subsample ridge ensemble, we aim to answer:

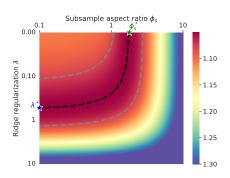
- (1) What is the role and relationship between implicit subsampling and explicit ridge regularization with regard to prediction risk?
- (2) How to tune the subsample aspect ratio ϕ_s and the ridge penalty λ to minimize the prediction risk?

Risk equivalence

As $p/n \to \phi$ and $p/k \to \phi_s$, the prediction risk in the full ensemble $(M = \infty)$ converges:

$$R_{k,\infty}^{\lambda} \xrightarrow{\text{a.s.}} \mathscr{R}_{\infty}^{\lambda}(\phi,\phi_s).$$

For $\phi = 0.1$, the risk profile as a function of (λ, ϕ_s) is shown in the figure in the log-log scale.

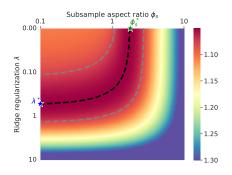


Risk equivalence

▶ As $p/n \rightarrow \phi$ and $p/k \rightarrow \phi_s$, the prediction risk in the full ensemble $(M = \infty)$ converges:

$$R_{k,\infty}^{\lambda} \xrightarrow{\text{a.s.}} \mathscr{R}_{\infty}^{\lambda}(\phi,\phi_s).$$

- For $\phi = 0.1$, the risk profile as a function of (λ, ϕ_s) is shown in the figure in the log-log scale.
- Risk equivalence (Theorem 2.3):



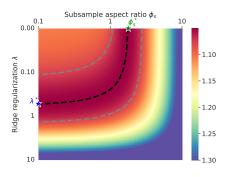
$$\min_{\substack{\phi_s \geq \phi}} \mathscr{R}^0_\infty(\phi, \phi_s) = \min_{\substack{\lambda \geq 0}} \mathscr{R}^\lambda_\infty(\phi, \phi) = \min_{\substack{\phi_s \geq \phi, \\ \lambda \geq 0}} \mathscr{R}^\lambda_\infty(\phi, \phi_s) \,.$$
opt. ridge ensemble predictor ensemble

Risk equivalence

▶ As $p/n \rightarrow \phi$ and $p/k \rightarrow \phi_s$, the prediction risk in the full ensemble $(M = \infty)$ converges:

$$R_{k,\infty}^{\lambda} \xrightarrow{\text{a.s.}} \mathscr{R}_{\infty}^{\lambda}(\phi,\phi_s).$$

For $\phi = 0.1$, the risk profile as a function of (λ, ϕ_s) is shown in the figure in the log-log scale.



▶ Implication: the implicit regularization provided by the subsample ensemble (a larger ϕ_s , or a smaller k) amounts to adding more explicit ridge regularization (a larger λ).

▶ Beyond quantitative analysis, how can one pick (λ, ϕ_s) to minimize the prediction risk?

- ▶ Beyond quantitative analysis, how can one pick (λ, ϕ_s) to minimize the prediction risk?
- For ordinary ridge (M = 1 or k = n), the **generalized cross-validation (GCV)** estimator is known to be consistent.

- ▶ Beyond quantitative analysis, how can one pick (λ, ϕ_s) to minimize the prediction risk?
- For ordinary ridge (M = 1 or k = n), the **generalized cross-validation (GCV)** estimator is known to be consistent.
- ► For general *M*, the GCV estimator is defined as

$$\operatorname{gcv}_{k,M}^{\lambda} = \frac{T_{k,M}^{\lambda}}{D_{k,M}^{\lambda}} \longleftarrow \operatorname{training\ error} \operatorname{degree\ of\ freedom\ correction}$$

- ▶ Beyond quantitative analysis, how can one pick (λ, ϕ_s) to minimize the prediction risk?
- For ordinary ridge (M = 1 or k = n), the **generalized cross-validation (GCV)** estimator is known to be consistent.
- ► For general *M*, the GCV estimator is defined as

$$\mathsf{gcv}_{k,M}^{\lambda} = \frac{T_{k,M}^{\lambda}}{D_{k,M}^{\lambda}} = \frac{\frac{1}{|I_{1:M}|} \sum_{i \in I_{1:M}} (y_i - \boldsymbol{x}_i^{\top} \widetilde{\boldsymbol{\beta}}_{k,M}^{\lambda})^2}{(1 - |I_{1:M}|^{-1} \operatorname{tr}(\boldsymbol{S}_{k,M}^{\lambda}))^2},$$

where $S_{k,M}^{\lambda} = \frac{1}{M} \sum_{\ell=1}^{M} X_{I_{\ell}} (X_{I_{\ell}}^{\top} X_{I_{\ell}} / k + \lambda I_p)^{+} X_{I_{\ell}}^{\top} / k$ is the smoothing matrix that represents the degree of freedom.

- ▶ Beyond quantitative analysis, how can one pick (λ, ϕ_s) to minimize the prediction risk?
- For ordinary ridge (M = 1 or k = n), the **generalized cross-validation (GCV)** estimator is known to be consistent.
- ► For general *M*, the GCV estimator is defined as

$$\mathsf{gcv}_{k,M}^{\lambda} = \frac{T_{k,M}^{\lambda}}{D_{k,M}^{\lambda}} = \frac{\frac{1}{|I_{1:M}|} \sum_{i \in I_{1:M}} (y_i - \boldsymbol{x}_i^{\top} \widetilde{\boldsymbol{\beta}}_{k,M}^{\lambda})^2}{(1 - |I_{1:M}|^{-1} \operatorname{tr}(\boldsymbol{S}_{k,M}^{\lambda}))^2},$$

where $S_{k,M}^{\lambda} = \frac{1}{M} \sum_{\ell=1}^{M} X_{I_{\ell}} (X_{I_{\ell}}^{\top} X_{I_{\ell}} / k + \lambda I_p)^{+} X_{I_{\ell}}^{\top} / k$ is the smoothing matrix that represents the degree of freedom.

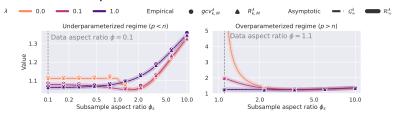
► The GCV for full ensemble is defined by letting *M* tend to infinity.

Uniform consistency of GCV for full-ensemble ridge

▶ (Theorem 3.1, informal) For all $\lambda \geq 0$, we have

$$\max_{k \in \mathcal{K}_n} |\mathsf{gcv}_{k,\infty}^{\lambda} - R_{k,\infty}^{\lambda}| \xrightarrow{\mathsf{a.s.}} 0.$$

► This allows selecting the optimal ensemble and subsample sizes in a data-dependent manner:



Coupled with the risk equivalence result, it suffices to fix λ and only tune the subsample size k or subsample aspect ratio ϕ_s .

Inconsistency on finite ensembles

▶ (Proposition 3.3, informal) For ensemble size M = 2, ridge penalty $\lambda = 0$, and any $\phi \in (0, \infty)$,

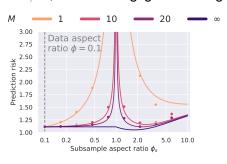
$$|\operatorname{gcv}_{k,2}^{\mathbf{0}} - R_{k,2}^{\mathbf{0}}| \stackrel{\mathbf{p}}{\not\to} 0.$$

Inconsistency on finite ensembles

▶ (Proposition 3.3, informal) For ensemble size M = 2, ridge penalty $\lambda = 0$, and any $\phi \in (0, \infty)$,

$$|\operatorname{gcv}_{k,2}^{\mathbf{0}} - R_{k,2}^{\mathbf{0}}| \stackrel{\mathbf{p}}{\not\to} 0.$$

▶ The bias scales as 1/M, which is negligible for large M:



point - empirical GCV

line - theoretical risk

Summary

- ► This work [1] reveals the connections between the *implicit* regularization induced by subsampling and explicit ridge regularization for subsample ridge ensembles.
- We establish the uniform consistency of GCV for full ridge ensembles.
- We show that GCV can be *inconsistent* even for ridge ensembles when M = 2.
- ► Future directions: bias correction of GCV for finite *M*; extension to other metrics [2]; extension to other base predictors.

[1] Jin-Hong Du, Pratik Patil, and Arun Kumar Kuchibhotla. "Subsample Ridge Ensembles: Equivalences and Generalized Cross-Validation". In: International Conference on Machine Learning (2023)

[2] Pratik Patil and Jin-Hong Du. "Generalized equivalences between subsampling and ridge regularization". In: arXiv preprint arXiv:2305.18496 (2023)