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Question: What is the best accuracy one 
can achieve from 600 training samples?
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Question: What is the best accuracy one 
can achieve from 600 training samples?

(Empirical) Answer: Probably ≈
82%, using good networks. 

Hoeim et al., Learning curves for Analysis of Deep Networks, ICML 2020
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Theoretical testbeds: random neural networks

Barbier et al, Optimal errors and 
phase transitions in high-
dimensional generalized linear 
models, PNAS 2017
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Li and Sompolinsky, Statistical 
Mechanics of Deep Linear Networks, 
PRX 2020
Ariosto et al., Statistical Mechanics of 
Deep Learning Beyond the Infinite 
Width limit, 2023



(Data) Gaussian data: 𝑥 ∼ 𝒩(0, Σ)
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Supervised learning with 𝑛 i.i.d samples 𝒟 = {𝑥𝜇, 𝑦⋆ 𝑥𝜇 }𝜇=1
𝑛



Supervised learning with 𝑛 i.i.d samples 𝒟 = {𝑥𝜇, 𝑦⋆ 𝑥𝜇 }𝜇=1
𝑛

𝑛, 𝑑, 𝑘1, … , 𝑘𝐿 ⟶∞ 𝛼 =
𝑛

𝑑
, 𝛾ℓ =

𝑘ℓ
𝑑
= 𝒪(1)

Proportional extensive-width limit

(Train set)

with
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≈

same Bayes optimal errors
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𝝆, 𝝐𝒓 depend on the architecture and 
activations of the original network.

≈

same Bayes optimal errors



Regression

Classification
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Regression

Classification
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depth = 2, 𝜎 = ReLU − ൗ1
2𝜋
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Q2.  How do the test errors achieved by ERM algorithms in practice compare?
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Q1.  Can one provide a sharp asymptotic characterization of the Bayes-optimal error?



Optimally regularized ridge regression and 
kernel regression are Bayes optimal.

Regression
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depth = 3, 𝜎 = 𝑡𝑎𝑛ℎ



Optimally regularized logistic and ridge 
classification are close to Bayes optimal.
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depth = 3, 𝜎 = 𝑡𝑎𝑛ℎ
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When 𝑛 ∼ 𝑑2 , higher-order statistics are learnt, the 
Gaussian equivalences break down.
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Hong Hu and Yue M. Lu. Sharp asymptotics of kernel ridge regression beyond the linear regime. arXiv:2205.06798, 2022

Bordelon,  Canatar, Pehlevan. Spectrum dependent learning curves in kernel regression and wide neural networks ICML 2020



Takeaways:

• We conjecture closed-form formulas for the Bayes-optimal test errors when 
learning data generated by a deep non-linear random network.

• This optimal error is achieved by very simple ERM methods.

Challenge /Future work: 

There is a need for a theory of finite-width architectures in super linear regimes.
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Thank you for your attention !

See you at posters:

# 221 on Thu. 10.30 (this work)

# 814 on Wed 14.00 (learning with deep random nets)


