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Problem Setting

Objective: Finite-sum minimization problem

min
x∈Rd

F (x) = 1
n

n∑
i=1

fi(x).

Ex. Supervised Learning
fi ← training loss of the i-th sample, x← neural network parameters

Algorithm: Stochastic Gradient Descent (constant step size η)

xt = xt−1 − η∇fi(t) (xt−1)

Question: Which choice of i(t) achieves faster convergence?
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With vs Without-replacement SGD

With-replacement SGD: Sample i(t) ∼ Unif ({1, . . . , n}) i.i.d.

Most theoretical results focus on with-replacement SGD.

However, in real-world applications, without-replacement SGD is
commonly used due to its simplicity and is believed to converge faster.
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With vs Without-replacement SGD

Without-replacement SGD (Shuffling SGD)
1. In the k-th epoch, choose a permutation σk : {1, . . . , n} → {1, . . . , n}
2. Use fσk(j) at the j-th iteration of k-th epoch, total T = nK iterations

Random Reshuffling (SGD-RR): choose σk randomly

Permutation-based SGD: can choose σk arbitrarily Ex. GraB [LGS22]
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Our Contributions

We present the convergence lower bounds for both SGD-RR and
permutation-based SGD on smooth fi’s with strongly-convex F .
Our lower bound results are...

1 the first to completely match the upper bounds for all factors
2 the first to generalize to weighted average (end-of-epoch) iterates

Especially, our lower bounds for arbitrary permutation-based SGD imply
that GraB [LGS22] achieves the optimal rate!
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Function Class

In this work, we mainly consider the function class F(L, µ, τ, ν), which
satisfies properties P1, P2, and P3.

P1. Strong convexity. F is µ-strongly convex: for ∀x, y ∈ Rd,

F (y) ≥ F (x) + ⟨∇F (x), y − x⟩+ µ

2 ∥y − x∥2 .

P2. Smoothness & Component Convexity. Each component function
fi is L-smooth and convex: for ∀x, y ∈ Rd,

∥∇fi(x)−∇fi(y)∥ ≤ L ∥x− y∥ ,

fi(y) ≥ fi(x) + ⟨∇fi(x), y − x⟩ .
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Function Class

P3. Bounded Gradient Error. There exists τ, ν ≥ 0 s.t. every
component function fi satisfies the following: for ∀x ∈ Rd,

∥∇fi(x)−∇F (x)∥ ≤ τ ∥∇F (x)∥+ ν.

Note that if H ⊂ H′,
then (LB for H) ≤ (LB for H′).

Showing the same lower bound for a narrower function class makes the
result stronger.
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Previous Results

Known Facts: (1) Without-replacement is faster than with-replacement,
(2) Permutation-based SGD is faster than SGD-RR, in terms of upper bounds

With-replacement: E[F (x̄T )]− F ∗ = O
(

ν2

µnK

)
[RSS12]

SGD-RR: E[F (xK
n )]− F ∗ = Õ

(
L2ν2

µ3nK2

) [AYS20]
[MKR20]

Permutation-based: F (xK
n )− F ∗ = Õ

(
H2L2ν2

µ3n2K2

)
by GraB [LGS22]

Our Work: We provide matching lower bounds for SGD-RR and
permutation-based SGD to guarantee that the upper bounds are tight.
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Our Lower Bound Results on Random Reshuffling

κ: condition number L/µ

c1, c2: universal constant

xK
n : final iterate

Gray cell: lower bound result
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Our Lower Bound Results on Random Reshuffling

κ: condition number L/µ

c1, c2: universal constant

xK
n : final iterate

Gray cell: lower bound result

Previous Lower Bound: Ω( ν2

µnK2 ) [YRS22]
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Our Lower Bound Results on Random Reshuffling

κ: condition number L/µ

c1, c2: universal constant

x̂ =
∑K

k=0 αkxk
n/

∑K
k=0 αk

x̂tail =
∑K

k=⌈ K
2 ⌉ xk

n/
(
K − ⌈K

2 ⌉+ 1
)

First lower bound results considering average end-of-epoch iterates!
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Our Lower Bound Results on Permutation-based SGD

κ: condition number L/µ

Gray cell: lower bound result

xK
n : final iterate

x̂ =
∑K

k=0 αkxk
n/

∑K
k=0 αk

H: Herding bound O
(√

d log n
)
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Remark
The lower bound in Thm 4.1 holds for arbitrary sampling methods.



Our Lower Bound Results on Permutation-based SGD

κ: condition number L/µ

Gray cell: lower bound result

xK
n : final iterate

x̂ =
∑K

k=0 αkxk
n/

∑K
k=0 αk

H: Herding bound O
(√

d log n
)

FP L: No component convexity & relaxes strong convexity to P L condition
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Summary
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Summary

We also have...
The first lower bound that applies to convex functions and perfectly
matches the previously known upper bound by [MKR20]
Some novel upper bound results, such as Propositions 3.4 and 4.6

For more details, please check the QR link to our paper below...
or even better, come and visit our poster tomorrow!

Poster Session 3
Date: July 26th (Wed)
Time: 11 a.m. - 12:30 p.m.
Place: Exhibit Hall 1 #713
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