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▪ Markov chains - Ubiquitous in statistics and learning.

➢ Markov Chain Monte Carlo (MCMC) for sampling.

➢ Stochastic Gradient Descent (SGD) for distributed optimization.

▪ Examples of Markov chains used on Graphs

➢ Simple Random Walk

➢ Metropolis Hastings Random Walk

Markov Chains on General Graphs

Undirected, connected graph
Nodes: {1,⋯ ,𝑁}

Adj. matrix 𝑨 = 𝑎𝑖𝑗 𝑖,𝑗∈{1,⋯,𝑁}

where:
𝑎𝑖𝑗 > 0 ⇔ 𝑖, 𝑗 is edge,

𝑎𝑖𝑗 = 0 o/w

[1] Pierre Brémaud. Markov chains Gibbs fields, Monte Carlo simulation, and Queues. 2020.

[2] Sun, Tao, Yuejiao Sun, and Wotao Yin. "On Markov Chain Gradient Descent." NeurIPS (2018).
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➢ Stochastic Gradient Descent (SGD) for distributed optimization.

▪ Examples of Markov chains used on Graphs

➢ Simple Random Walk

➢ Metropolis Hastings Random Walk

▪ Input parameters

➢ ‘Target’ probability measure 𝝁 = 𝜇𝑖 𝑖∈{1,⋯,𝑁}

➢ Transition probabilities 𝑷 = 𝑃𝑖𝑗 𝑖,𝑗∈{1,⋯,𝑁}

➢ Satisfy 𝝁𝑻𝑷 = 𝝁𝑻 (Balance Equation)

▪ Are usually time-reversible

➢ Satisfy 𝜇𝑖𝑃𝑖𝑗 = 𝜇𝑗𝑃𝑗𝑖 for all 𝑖, 𝑗 ∈ {1,⋯ ,𝑁} (Detailed Balance Equation)

Markov Chains on General Graphs

𝑖

𝑗

𝑘

𝑃𝑖𝑗 > 0 ⇔ 𝑎𝑖𝑗 > 0

[1] Pierre Brémaud. Markov chains Gibbs fields, Monte Carlo simulation, and Queues. 2020.

[2] Sun, Tao, Yuejiao Sun, and Wotao Yin. "On Markov Chain Gradient Descent." NeurIPS (2018).



Markov Chains on General Graphs

▪ MCMCs designed to be Scale Invariance (S.I.) and Distributed

➢ Do not need to know exact probabilities 𝜇𝑖’s to compute 𝑃𝑖𝑗’s

➢ At most, only require knowing 𝜇𝑖’s up to a constant multiple, and only for neighbors 
of the current node (local information only) at any time step

▪ Robust implementation with convergence guarantees

➢ S.I. allows graph to be explored on-the-fly; ergodicity guarantees convergence

➢ Lead to widespread adoption of MC (e.g. MHRW) for sampling and optimization



Markov Chains on General Graphs

▪ Classical Markov chains are victims of ‘bad’ graph topologies

➢ Can get ‘trapped’ within some subgraphs

➢ Highly correlated samples

Densely connected 
subgraph with very 
few outbound edges

Visit counts to nodes 
within subgraph higher 
than desired – slows 
MC convergence
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▪ Classical Markov chains are victims of ‘bad’ graph topologies

➢ Can get ‘trapped’ within some subgraphs

➢ Highly correlated samples

▪ Time-reversible Markov chains are slow

➢ Slower convergence to (target) stationary dist. 𝝁

➢ Non-reversible versions of the original Markov
chains are known give better results

Densely connected 
subgraph with very 
few outbound edges

Visit counts to nodes 
within subgraph higher 
than desired – slows 
MC convergence

[1] Konstantin S Turitsyn, Michael Chertkov, and Marija Vucelja. Irreversible monte carlo algorithms for efficient sampling. Physica

D: Nonlinear Phenomena, 240(4- 5):410–414, 2011.

[2] Andrieu, C. and Livingstone, S. Peskun–tierney ordering for markovian monte carlo: Beyond the reversible scenario. The Annals 

of Statistics, 49(4):1958–1981, 2021.
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Markov Chains on General Graphs

▪ Classical Markov chains are victims of ‘bad’ graph topologies

➢ Can get ‘trapped’ within some subgraphs

➢ Highly correlated samples

▪ Time-reversible Markov chains are slow

➢ Slower convergence to (target) stationary dist. 𝝁

➢ Non-reversible versions of the original Markov
chains are known give better results

▪ Non-backtracking approaches work better

➢ Avoids transitioning to node visited in previous step 

➢ Non-reversible in the original state space (although still time-reversible in an 
augmented state space)

➢ Smaller asymptotic variance of the estimator compared to base Markov chain

[1] Alon, N., Benjamini, I., Lubetzky, E., and Sodin, S. Nonbacktracking random walks mix faster. Communications in 

Contemporary Mathematics, 9(04):585–603, 2007

[2] Chul-Ho Lee, Xin Xu, and Do Young Eun. Beyond Random Walk and Metropolis-Hastings Samplers: Why You Should Not 

Backtrack for Unbiased Graph Sampling. In ACM SIGMETRICS 2012.
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➢ Only interacting with their most recent past
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Random Walks with Self-Repellence

▪ Non-backtracking walks are weakly Self-Repellent

➢ Only interacting with their most recent past

▪ Can a stronger version of Self-Repellence speed up 
Markov Chains?

➢ Interact with entire history

➢ Prioritize transitions to seldom visited nodes

➢ Empirical measure still needs to converge to
target distribution 𝝁

➢ Needs to be provably better than the original 
Markov chain in some sense



Our Contribution

Input: any Time-Reversible ‘base’ Markov Chain kernel 𝑃 and target measure 𝜇

▪ We design a Self-Repellent Random Walk (SRRW), such that

➢ Empirical distribution converges almost surely to 𝝁 (SLLN)

➢ Achieves smaller asymptotic variance compared to base MC

▪ First result for general, finite graphs used for algorithm design

➢ Self-repellent dynamics in literature: Focus on graphs such as d-dimensional grids; 
little to no knowledge of stationary probabilities – difficult to use as a basis for real 
world algorithm design.

➢ Vertex reinforced Random walks: Closely related to our process, but key difference 
being that it is self-attractive (reinforced) instead of repellent; no control over 
stationary distribution.

[1] Balint Toth. The "True" Self-Avoiding Walk with Bond Repulsion on Z: Limit Theorems. The Annals of Probability, 23(4), 1995 

[2] Balint Veto and Balint Toth. Self-repelling random walk with directed edges on Z. Electronic Journal of Probability, 13(none), 2008.

[3] Robin Pemantle. Vertex-reinforced random walk. Probability Theory and Related Fields, 92(1), 1992.

[4] Michel Benaimï, Olivier Raimond, and Bruno Schapira. Strongly vertex-reinforced random-walk on the complete graph. arXiv preprint 

arXiv:1208.6375, 2012.



Simple Random Walk → Self-Repellent 
Random Walk

▪ Simple Random Walk (SRW):

➢ Equally likely to visit neighbouring nodes (unweighted graph).

▪ Self Repellent Random Walk (SRRW):

➢ Needs a ‘base’ Markov chain as input (e.g. SRW)

➢ Transition probability is a decreasing function of the visit count of a node.

w.p. 0.5

w.p. 0.5

w.p. < 0.5

w.p. > 0.5

Transition probabilities for 
SRRW with SRW base chain

Transition Probabilities for SRW



Simple Random Walk → Self-Repellent 
Random Walk

We say deg 𝑖 = # neighbours of 𝑖. For all neighbours 𝑗 of node 𝑖.

▪ SRW

▪ SRRW with SRW as ‘base chain’

w.p. 0.5

w.p. 0.5

w.p. < 0.5

w.p. > 0.5

𝑃 𝑋𝑛+1 = 𝑗 𝑋𝑛 = 𝑖) =
1

deg 𝑖

𝑃 𝑋𝑛+1 = 𝑗 𝑋𝑛 = 𝑖, 𝑋𝑛−1, ⋯ , 𝑋0) ∝
1 + #𝑣𝑖𝑠𝑖𝑡𝑠 𝑡𝑜 𝑗

deg 𝑗

−𝛼

Transition probabilities for 
SRRW with SRW base chain

Transition Probabilities for SRW



Time-Reversible MC → Self-Repellent 
Random Walk

SRRW can be adapted for any time-reversible Markov chain also inheriting the S.I. property

▪ Any Time-reversible Markov chain

▪ SRRW version

w.p. 𝑃𝑖𝑘

𝑃 𝑋𝑛+1 = 𝑗 𝑋𝑛 = 𝑖, 𝑋𝑛−1, ⋯ , 𝑋0) ∝ 𝑃𝑖𝑗
1 + #𝑣𝑖𝑠𝑖𝑡𝑠 𝑡𝑜 𝑗

𝜇𝑗

−𝛼

𝑃 𝑋𝑛+1 = 𝑗 𝑋𝑛 = 𝑖) = 𝑃𝑖𝑗

𝑖

𝑗

𝑘

𝑖

𝑗

𝑘

w.p. 𝑃𝑖𝑗

w.p. > 𝑃𝑖𝑘

w.p. < 𝑃𝑖𝑗

SRRW version of Markov 
chain with kernel 𝑷

Markov chain with 
transition kernel 𝑷



Time-Reversible MC → Self-Repellent 
Random Walk

SRRW can be adapted for any time-reversible Markov chain also inheriting the S.I. property

▪ Any Time-reversible Markov chain

▪ SRRW version

▪ Why polynomial form as shown?

➢ Only form for which the S.I. property of time-reversible chains is inherited

➢ Key to robust implementation for any general graph

𝑃 𝑋𝑛+1 = 𝑗 𝑋𝑛 = 𝑖, 𝑋𝑛−1, ⋯ , 𝑋0) ∝ 𝑃𝑖𝑗
1 + #𝑣𝑖𝑠𝑖𝑡𝑠 𝑡𝑜 𝑗

𝜇𝑗

−𝛼

𝑃 𝑋𝑛+1 = 𝑗 𝑋𝑛 = 𝑖) = 𝑃𝑖𝑗

Larger 𝜶 > 𝟎 implies stronger self-repellence



Self-Repellent Random Walk

▪ Consider a stochastic process 𝑋𝑛, 𝐱𝑛 taking values in 𝑁 × Σ, which satisfy:

Set:             𝑋0 ∈ 𝑁 , and 𝐱0 ∈ Int Σ (e. g. 𝐱0 = 1/𝑁,⋯ , 1/𝑁 𝑇)

Draw:         𝑋𝑛+1 ~ 𝐾 𝐱𝑛 (𝑋𝑛,⋅) (transition to 𝑋𝑛+1 ∈ 𝒩(𝑋𝑛))

Iterate:      𝐱𝑛+1 = 𝐱𝑛 −
1

𝑛+2
(𝛅𝑋𝑛+1 − 𝐱𝑛) (update empirical measure)

where for any 𝐱 ∈ Int Σ ,

𝐾 𝐱 𝑖𝑗 ≜ 𝑃 𝑋𝑛+1 = 𝑗 𝑋𝑛 = 𝑖, 𝐱) = ൙𝑃𝑖𝑗
𝑥𝑗

𝜇𝑗

−𝛼

෍

𝑘∈[𝑁]

𝑃𝑖𝑘
𝑥𝑘
𝜇𝑘

−𝛼

Transition probabilities are functions of probability distributions.
In this case, a function of 𝑋𝑛’s own historical empirical measure.

𝑁 = {1,⋯ ,𝑁}, and Σ = {z ∈ 0,1 𝑁|1𝑇z = 1} (probability simplex)



SRRW: Stochastic Dynamics

▪ The matrix 𝑲 𝐱 = [𝐾 𝐱 𝑖𝑗] ∈ 0,1 𝑁×𝑁 is a nonlinear Markov kernel. Ergodic 

for all 𝐱 ∈ Int(Σ).

▪ Can show there exists a unique stationary dist. 𝝅 𝐱 ∈ Int Σ satisfying 
𝜋𝑖 𝐱 𝐾 𝐱 𝑖𝑗 = 𝜋𝑗 𝐱 𝐾 𝐱 𝑗𝑖 (detailed balance eqn.).

▪ Can decompose the iteration as

𝐱𝑛+1 = 𝐱𝑛 −
1

𝑛 + 2
𝒇 𝐱𝑛 + 𝝐 𝑋𝑛+1, x𝑛

where  𝒇 𝐱𝑛 = 𝝅 𝐱𝑛 − 𝐱𝑛 (mean field)
and      𝝐 𝑋𝑛+1, 𝐱𝑛 = 𝛅𝑋𝑛+1 − 𝝅(𝐱𝑛) (noise)

Stochastic approximation (SA) with state dependent noise. Related to ODE:

ሶ𝐱(𝑡) = 𝝅 𝐱 𝑡 − 𝐱(𝑡)



SRRW: Deterministic analysis 

▪ Can derive closed form of 𝝅 𝐱 = [𝜋𝑖(𝐱)], given ∀𝑖 ∈ [𝑛] by

𝜋𝑖 𝐱 =

σ𝑗 𝜇𝑗𝑃𝑖𝑗
𝑥𝑖
𝝁𝑖

−𝛼 𝑥𝑗
𝑑𝑗

−𝛼

σ𝑘σ𝑙 𝜇𝑘𝑃𝑘𝑙
𝑥𝑘
𝑑𝑘

−𝛼 𝑥𝑙
𝑑𝑙

−𝛼

Theorem 1 (Global stability of ODE) For all 𝛼 ≥ 0, 𝐱(0) ∈ Int(Σ), we have
𝐱 𝑡 ⟶ 𝝁 as 𝑡 → ∞,

where 𝝁 = 𝜇𝑖 ∈ Int(Σ) is the target stationary distribution.



SRRW: Deterministic analysis 

▪ Can derive closed form of 𝝅 𝐱 = [𝜋𝑖(𝐱)], given ∀𝑖 ∈ [𝑛] by

▪ Proof steps:

➢ Show 𝝅 𝐱 = 𝐱 has a unique solution, given by 𝝁.

➢ Show that 𝜔(𝐱) is a Lyapunov function.

➢ Apply LaSalle’s Invariance Principle to obtain convergence.

𝜋𝑖 𝐱 =

σ𝑗 𝜇𝑗𝑃𝑖𝑗
𝑥𝑖
𝝁𝑖

−𝛼 𝑥𝑗
𝑑𝑗

−𝛼

σ𝑘σ𝑙 𝜇𝑘𝑃𝑘𝑙
𝑥𝑘
𝑑𝑘

−𝛼 𝑥𝑙
𝑑𝑙

−𝛼

Theorem 1 (Global stability of ODE) For all 𝛼 ≥ 0, 𝐱(0) ∈ Int(Σ), we have
𝐱 𝑡 ⟶ 𝝁 as 𝑡 → ∞,

where 𝝁 = 𝜇𝑖 ∈ Int(Σ) is the target stationary distribution.

= 𝜔(𝐱)



SRRW: Stochastic analysis 

▪ The ODE global stability via Lyapunov function help provide convergence  
results for the stochastic seq. of empirical measures 𝐱𝑛 𝑛≥0.

Theorem 2 (SLLN and CLT) For all 𝛼 ≥ 0, any 𝐱0 ∈ Int(Σ), and any 𝑋0 ∈ [𝑁], we 
have

𝐱𝑛 ⟶ 𝝁 as 𝑡 → ∞, 𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑢𝑟𝑒𝑙𝑦

𝑛 𝐱𝑛 − 𝝁 ⟶ 𝑁 𝟎,𝑽 𝛼 𝑎𝑠 𝑡 → ∞, 𝑖𝑛 𝑑𝑖𝑠𝑡.

where 𝑁 𝟎, 𝑽 𝛼 is a normal distribution with mean 𝟎 and covariance 𝑽 𝛼 , 

given by

𝑽 𝛼 = ෍

𝑘=1

𝑁−1
1

2𝛼 1 + 𝜆𝑘 + 1
.
1 + 𝜆𝑘
1 − 𝜆𝑘

𝐮𝑘𝐮𝑘
𝑇 .

Function of 𝛼 > 0
eigenvalues and 
eigenvectors of 
transition matrix 𝑷



SRRW: Ordering of Asymptotic Variance

▪ Full characterization of asymptotic variance of SRRW in Theorem 2 allows us 
to derive the following ordering result

➢ The <𝐿 denotes a Loewner ordering of two matrices

Corollary 3 For any 𝛼1 > 𝛼2 > 0, we have
𝑽 𝛼1 <𝐿 𝑽 𝛼2 <𝐿 𝑽 0



Estimator variance of SRRW

Estimator variance of base MC

Corollary 4 (Sampling variance) For any 𝛼 > 0, and any bounded scalar valued 
function 𝑔: 𝑁 → R we have

𝐠𝑇𝑽 𝛼 𝐠

𝐠𝑇𝑽 0 𝐠
≤ 𝑂(1/𝛼)

where 𝐠 = 𝑔 1 ,⋯𝑔 𝑁 𝑇.

▪ Full characterization of asymptotic variance of SRRW in Theorem 2 allows us 
to derive the following ordering result

➢ The <𝐿 denotes a Loewner ordering of two matrices

▪ Upper bound on asymptotic variance for MCMC sampling

SRRW: Ordering of Asymptotic Variance

Corollary 3 For any 𝛼1 > 𝛼2 > 0, we have
𝑽 𝛼1 <𝐿 𝑽 𝛼2 <𝐿 𝑽 0



▪ SRRW variance goes to zero – large enough 𝛼 can eventually beat i.i.d.
sampler

➢ Typical i.i.d. sampler achieves smaller variance than random walkers on graph which 
needs to adhere to graph topology while walking

➢ SRRW with sufficiently large 𝛼 > 0 is a rare example of random walker which can 
beat i.i.d. sampler despite the graph constraints

SRRW: Ordering of Asymptotic Variance

→ 0, as 𝛼 → ∞
Estimator variance of SRRW

Estimator variance of base MC

Corollary 4 (Sampling variance) For any 𝛼 > 0, and any bounded scalar valued 
function 𝑔: 𝑁 → R we have

𝐠𝑇𝑽 𝛼 𝐠

𝐠𝑇𝑽 0 𝐠
≤ 𝑂(1/𝛼)

where 𝐠 = 𝑔 1 ,⋯𝑔 𝑁 𝑇.



Ending Remarks

▪ Nonlinearity of the transition kernel is key

➢ Nonlinearity induced via self-interactions can be used for effective algorithm design

➢ Allows us to achieve asymptotically minimal sampling variance

▪ Numerical simulations over different combinations of 𝛼 > 0 show its 
performance benefits and confirm our theoretical findings


