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Markov Chains on General Graphs

= Markov chains - Ubiquitous in statistics and learning.
» Markov Chain Monte Carlo (MCMC) for sampling.
» Stochastic Gradient Descent (SGD) for distributed optimization.

= Examples of Markov chains used on Graphs
» Simple Random Walk
» Metropolis Hastings Random Walk

Undirected, connected graph
Nodes: {1,---,N}
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[1] Pierre Brémaud. Markov chains Gibbs fields, Monte Carlo simulation, and Queues. 2020.
[2] Sun, Tao, Yuejiao Sun, and Wotao Yin. "On Markov Chain Gradient Descent.” NeurlPS (2018).
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= |nput parameters
> ‘Target’ probability measure u = [p;licq0ny N/ = W

» Transition probabilities P = [Pij]ije{l---N}

> Satisfy uT P = uT (Balance Equation)

= Are usually time-reversible
» Satisfy y; P;j = pjP;; foralli,j € {1,---, N} (Detailed Balance Equation)

[1] Pierre Brémaud. Markov chains Gibbs fields, Monte Carlo simulation, and Queues. 2020.
[2] Sun, Tao, Yuejiao Sun, and Wotao Yin. "On Markov Chain Gradient Descent.” NeurlPS (2018).
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Markov Chains on General Graphs

= MCMCs designed to be Scale Invariance (S.1.) and Distributed
» Do not need to know exact probabilities y;’s to compute P;;’s

» At most, only require knowing p;’s up to a constant multiple, and only for neighbors
of the current node (local information only) at any time step

= Robust implementation with convergence guarantees
» S.lI. allows graph to be explored on-the-fly; ergodicity guarantees convergence

» Lead to widespread adoption of MC (e.g. MHRW) for sampling and optimization
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Markov Chains on General Graphs
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= Classical Markov chains are victims of ‘bad’ graph topologies
» Can get ‘trapped’ within some subgraphs
» Highly correlated samples

Visit counts to nodes
within subgraph higher
than desired — slows
MC convergence
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= Classical Markov chains are victims of ‘bad’ graph topologies
» Can get ‘trapped’ within some subgraphs
» Highly correlated samples

=* Time-reversible Markov chains are slow

» Slower convergence to (target) stationary dist. u

» Non-reversible versions of the original Markov
chains are known give better results

Visit counts to nodes
within subgraph higher
than desired — slows
MC convergence
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[1] Konstantin S Turitsyn, Michael Chertkov, and Marija Vucelja. Irreversible monte carlo algorithms for efficient sampling. Physica
D: Nonlinear Phenomena, 240(4- 5):410-414, 2011.

[2] Andrieu, C. and Livingstone, S. Peskun-tierney ordering for markovian monte carlo: Beyond the reversible scenario. The Annals
of Statistics, 49(4):1958-1981, 2021.

[3] Diaconis, P., Holmes, S., and Neal, R. M. Analysis of a nonreversible markov chain sampler. Annals of Applied Probability, pp.
726-752, 2000.
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Markov Chains on General Graphs

= Classical Markov chains are victims of ‘bad’ graph topologies
» Can get ‘trapped’ within some subgraphs
» Highly correlated samples

= Time-reversible Markov chains are slow
» Slower convergence to (target) stationary dist. u

» Non-reversible versions of the original Markov
chains are known give better results

Sk

= Non-backtracking approaches work better
» Avoids transitioning to node visited in previous step
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Markov Chains on General Graphs

= Classical Markov chains are victims of ‘bad’ graph topologies
» Can get ‘trapped’ within some subgraphs
» Highly correlated samples

= Time-reversible Markov chains are slow
» Slower convergence to (target) stationary dist. u

» Non-reversible versions of the original Markov
chains are known give better results

= Non-backtracking approaches work better
» Avoids transitioning to node visited in previous step

» Non-reversible in the original state space (although still time-reversible in an
augmented state space)

» Smaller asymptotic variance of the estimator compared to base Markov chain

[1] Alon, N., Benjamini, 1., Lubetzky, E., and Sodin, S. Nonbacktracking random walks mix faster. Communications in
Contemporary Mathematics, 9(04):585-603, 2007

[2] Chul-Ho Lee, Xin Xu, and Do Young Eun. Beyond Random Walk and Metropolis-Hastings Samplers: Why You Should Not
Backtrack for Unbiased Graph Sampling. In ACM SIGMETRICS 2012.
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Random Walks with Self-Repellence

= Non-backtracking walks are weakly Self-Repellent

» Only interacting with their most recent past
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Random Walks with Self-Repellence

= Non-backtracking walks are weakly Self-Repellent

» Only interacting with their most recentpast oo

= Can a stronger version of Self-Repellence speed up
Markov Chains?

—— o o o
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Random Walks with Self-Repellence

= Non-backtracking walks are weakly Self-Repellent

» Only interacting with their most recentpast oo

= Can a stronger version of Self-Repellence speed up
Markov Chains?

» Interact with entire history

—— o o o

> Prioritize transitions to seldom visited nodes @ (~=~X | ~_S 7 _____ -

» Empirical measure still needs to converge to
target distribution u

» Needs to be provably better than the original
Markov chain in some sense
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Our Contribution

Input: any Time-Reversible ‘base’ Markov Chain kernel P and target measure u

= We design a Self-Repellent Random Walk (SRRW), such that
» Empirical distribution converges almost surely to u (SLLN)

» Achieves smaller asymptotic variance compared to base MC

= First result for general, finite graphs used for algorithm design

» Self-repellent dynamics in literature: Focus on graphs such as d-dimensional grids;

little to no knowledge of stationary probabilities — difficult to use as a basis for real
world algorithm design.

» Vertex reinforced Random walks: Closely related to our process, but key difference

being that it is self-attractive (reinforced) instead of repellent; no control over
stationary distribution.

[1] Balint Toth. The "True" Self-Avoiding Walk with Bond Repulsion on Z: Limit Theorems. The Annals of Probability, 23(4), 1995
[2] Balint \eto and Balint Toth. Self-repelling random walk with directed edges on Z. Electronic Journal of Probability, 13(none), 2008.
[3] Robin Pemantle. Vertex-reinforced random walk. Probability Theory and Related Fields, 92(1), 1992.

[4] Michel Benaimi, Olivier Raimond, and Bruno Schapira. Strongly vertex-reinforced random-walk on the complete graph. arXiv preprint
arXiv:1208.6375, 2012.
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Simple Random Walk — Self-Repellent
Random Walk

= Simple Random Walk (SRW):
» Equally likely to visit neighbouring nodes (unweighted graph).

= Self Repellent Random Walk (SRRW):
» Needs a ‘base’ Markov chain as input (e.g. SRW)

» Transition probability is a decreasing function of the visit count of a node.

Transition Probabilities for SRW Transition probabilities for
SRRW with SRW base chain
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Simple Random Walk — Self-Repellent

Random Walk
We say deg(i) = # neighbours of i. For all neighbours j of node i.
= SRW
P(nar =J 1 Xn =) = g

= SRRW with SRW as ‘base chain’
P(Xn+1 =j | Xn = ian—li'”JXO) X <

1 + #visits to j)_a
deg(j)

Transition Probabilities for SRW Transition probabilities for
SRRW with SRW base chain
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Time-Reversible MC — Self-Repellent
Random Walk

SRRW can be adapted for any time-reversible Markov chain also inheriting the S.I. property

= Any Time-reversible Markov chain
PXpt1 =J | Xp =1) =P

= SRRW version
P(Xn+1 =j | Xn = i:Xn—lx'”'XO) X Pif (

1 + #visits to j)_a

Hj

Markov chain with SRRW version of Markov
transition kernel P chain with kernel P
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Time-Reversible MC — Self-Repellent
Random Walk

SRRW can be adapted for any time-reversible Markov chain also inheriting the S.I. property

= Any Time-reversible Markov chain
PXpt1 =J | Xp =1) =P

= SRRW version N
, _ (1 + #visits to | I

P(Xpnt1=Jj 1 Xn=1Xn_1,", Xp) Pij: 0 :
W~ J___ P

Larger a > 0 implies stronger self-repellence

= Why polynomial form as shown?

» Only form for which the S.I. property of time-reversible chains is inherited
» Key to robust implementation for any general graph
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Self-Repellent Random Walk

= Consider a stochastic process {X,,, X,,} taking values in [N] X X, which satisfy:

Set: X, € [N],and x4 € Int(2) (e.g. Xo = [1/N, -+, 1/N]T)

Draw: Xn+1 ~ K[xnl(x, 9 (transition to X,,, 1 € N (X}))

lterate: X,41 =X, — ( X,., — Xn) (update empirical measure)

n+2

where for any x € Int(X),

K[XijAP(Xn+1_]|X =i,X)=P ij ,Ll /z ik )
]

KE[N]

Transition probabilities are functions of probability distributions.
In this case, a function of X,;’s own historical empirical measure.

[N]={1,---,N},and = = {z € [0,1]"|17z = 1} (probability simplex)
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SRRW: Stochastic Dynamics

The matrix K[x] = [K[x];;] € [0,1]"*" is a nonlinear Markov kernel. Ergodic
for all x € Int(2).

Can show there exists a unique stationary dist. w(x) € Int(X) satisfying
m; (X)K[x];; = mj(X)K[x];; (detailed balance eqn.).

Can decompose the iteration as

1
{ Xn+1 = Xp — m (f(xn) + G(Xn+1»Xn))]
where f(x,) = n(x,) — X, (mean field)
and  €(Xp41,Xy) = 8%, —(Xy) (noise)

Stochastic approximation (SA) with state dependent noise. Related to ODE:

x(t) = m(x(t)) — x(t)
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SRRW: Deterministic analysis

= Can derive closed form of m(x) = [m;(x)], given Vi € [n] by

m;(X) =

s () ()

Theorem 1 (Global stability of ODE) For all « = 0, x(0) € Int(¥), we have
x(t) > u as t — oo,
where u = [u;] € Int(Z) is the target stationary distribution.
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SRRW: Deterministic analysis

= Can derive closed form of m(x) = [m;(x)], given Vi € [n] by
x;\ X -
2j#iFyj (ul) (d_j>
[Zk 21 M Pra (g’;) (%) ] = w(X)

Theorem 1 (Global stability of ODE) For all « = 0, x(0) € Int(¥), we have
x(t) > u as t — oo,
where u = [u;] € Int(Z) is the target stationary distribution.

m;(X) =

= Proof steps:
» Show m(X) = x has a unique solution, given by pu.
» Show that w(X) is a Lyapunov function.
» Apply LaSalle’s Invariance Principle to obtain convergence.
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SRRW: Stochastic analysis

= The ODE global stability via Lyapunov function help provide convergence
results for the stochastic seq. of empirical measures {x,,}.,,>¢-

Theorem 2 (SLLN and CLT) For all @ = 0, any X, € Int(X), and any X, € [N], we

have
X, — MU as t - oo, almost surely

Vn(x, —u) — N(0,V(a)) ast— o, in dist.
where N(O, V(a)) is a normal distribution with mean 0 and covariance V(«),

given by
N- 1 1+ Ak . Functionof a > 0
— eigenvalues and
V(C() z Za(]_ + Ak) + 1 . 1 — Ak Uk - eigenvectors of

transition matrix P
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SRRW: Ordering of Asymptotic Variance

= Full characterization of asymptotic variance of SRRW in Theorem 2 allows us
to derive the following ordering result

» The <; denotes a Loewner ordering of two matrices

Corollary 3 For any a; > a, > 0, we have
V(ay) <, V(az) <, V(0)
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SRRW: Ordering of Asymptotic Variance

= Full characterization of asymptotic variance of SRRW in Theorem 2 allows us
to derive the following ordering result

» The <; denotes a Loewner ordering of two matrices

Corollary 3 For any a; > a, > 0, we have
V(ay) <, V(az) <, V(0)

= Upper bound on asymptotic variance for MCMC sampling

Corollary 4 (Sampling variance) For any @ > 0, and any bounded scalar valued
function g: [N] - R we have

Estimator variance of SRRW &' V(a)g
Estimator variance of base MC gTV(O) g

<0(1/a)

where g = [g(1),-- g(\)]".
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SRRW: Ordering of Asymptotic Variance

= SRRW variance goes to zero — large enough a can eventually beat i.i.d.
sampler

» Typical i.i.d. sampler achieves smaller variance than random walkers on graph which
needs to adhere to graph topology while walking

» SRRW with sufficiently large @ > 0 is a rare example of random walker which can
beat i.i.d. sampler despite the graph constraints

Corollary 4 (Sampling variance) For any a > 0, and any bounded scalar valued
function g: [N] - R we have

Estimator variance of SRRW &' V(a)g

<0(1l/«x —>0,asa—>oo]
Estimator variance of base MC gTV(O)g [ ( / )

where g = [g(1),-- g(\)]".
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Ending Remarks

= Nonlinearity of the transition kernel is key
» Nonlinearity induced via self-interactions can be used for effective algorithm design

» Allows us to achieve asymptotically minimal sampling variance

= Numerical simulations over different combinations of @ > 0 show its
performance benefits and confirm our theoretical findings

0.5
"""""""""""""""" === alpha=0.5 --- alpha =0.5
alpha =2 o alpha =2
0.40 alpha =1 0.4 - \~\\ alpha =1
g --- alpha=15 Sso Tsol --- alpha=1.5
© ——- alpha = sigmoid_1 g \\ s>~ —-—- alpha = sigmoid_1
VW o | m———mm e R . = - S~o f f
a 0359 T T T T T e === alpha = sigmoid_2 2037 TTmsao j_\._\ ~~~~~~ === alpha = sigmoid_2
= === MHRW it Sso R === MHRW
= I P e L D -~
g N Tl IR S
S 0.30 i 0.2 \\\ TSl Theell
T - = Se Sl el
(S SITEIIIzoso--l b el TN T
0.25 - B e RPN 011 TSselTUeeliso . TTee-
T T T T T T 0.0 T T T T T T
2000 2200 2400 2600 2800 3000 2000 2200 2400 2600 2800 3000
Number of steps (n) Number of steps (n)
(a) Convergence of x,, to the uniform distribution. (b) Convergence of ¢, (g) to the ground truth gl1 /N.

=|QVIA NC STATE UNIVERSITY




