

Towards Omni-generalizable Neural Methods for Vehicle Routing Problems

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang

Affiliation:Nanyang Technological UniversityEindhoven University of TechnologyShandong UniversitySingapore Management University

 We study a challenging yet realistic setting, which considers the generalization across both size and distribution (a.k.a., *omni-generalization*) in vehicle routing problems (VRPs). This paper proposes a general *meta-learning* framework to improve the omni-generalization of popular neural VRP solvers.

Motivation

- Limited generalization performance^[1]
- Single-dimension generalization
- Training a one-size-fits-all model is not realistic^[2]

Uniform

Size generalization

Distribution generalization

[1] Joshi, Chaitanya K., et al. "Learning the travelling salesperson problem requires rethinking generalization." Constraints 27.1-2 (2022): 70-98.
[2] Manchanda, Sahil, et al. "On the Generalization of Neural Combinatorial Optimization Heuristics." In ECMLPKDD 2022.

Methodology

- Meta-Learning Framework^[1]
 - Inner-Loop Optimization
 - Outer-Loop Optimization
 - Hierarchical Task Scheduler

Algorithm 1 Meta-Training for VRPs

New Task

 $\theta_{i'}^{(1)}$

 $\theta_{i'}^{(K)}$

Tour

Inference

 $\theta_{i}^{(K)}$

Task-Specific

Input: distribution over tasks $p(\mathcal{T})$, number of tasks in a minibatch B, number of inner-loop updates K, batch size M, step sizes of inner-loop and outer-loop optimization α, β ; **Output:** meta-model θ_0^* ;

1: Initialize meta-model θ_0 2: while not done do $\{\mathcal{T}_i, w_i\}_{i=1}^B, \leftarrow$ Hierarchical task scheduler 3: for $i = 1, \ldots, B$ do 4: Initialize task-specific model $\theta_i^{(0)} \leftarrow \theta_0$ 5: 6: for k = 1, ..., K do { // Inner-loop optimization] 7: Sample training instances $\{\mathcal{G}_m\}_{m=1}^M$ from task \mathcal{T}_i 8: Obtain $\nabla_{\theta_i^{(k-1)}} \mathcal{L}_i(\theta_i^{(k-1)})$ using Eq. (5) 9: $\theta_i^{(k)} \leftarrow \theta_i^{(k-1)} - \alpha \nabla_{\theta_i^{(k-1)}} \mathcal{L}_i(\theta_i^{(k-1)})$ 10: end for 11: Sample validation instances $\{\mathcal{G}'_m\}_{m=1}^M$ from task \mathcal{T}_i 12: Obtain $\nabla_{\theta_0} \mathcal{L}_i(\theta_i^{(K)})$ using Eq. (6) 13: end for 14: { // Outer-loop optimization } 15: $\theta_0 \leftarrow \theta_0 - \beta \sum_{i=1}^B w_i \nabla_{\theta_0} \mathcal{L}_i(\theta_i^{(K)})$ 16: 17: end while

[1] Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." In ICML 2017.

Methodology

- First-Order Approximation
 - FOMAML^[1]
 - Reptile^[2]
 - $\theta_0 \leftarrow \theta_0 \beta \sum_{i=1}^B w_i \nabla_{\theta_i} \mathcal{L}_i(\theta_i^{(K)}).$ $\theta_0 \leftarrow \theta_0 + \beta \sum_{i=1}^B w_i(\theta_i^{(K)} \theta_0).$ • Ours

[1] Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." In ICML 2017. [2] Nichol, Alex, Joshua Achiam, and John Schulman. "On first-order meta-learning algorithms." arXiv preprint arXiv:1803.02999 (2018).

Experiments

• Performance Evaluation on Synthetic Data

• Zero-Shot

• Few-Shot

		Cross-Size and Distribution Generalization (1K ins.)											
Method		(300, R) $(300, E)$			(500, R)			(500, E)		(1000, R)		(1000, E)	
		Obj. (Gap)	Time	Obj. (Gap)	Time	Obj. (Gap)	Time	Obj. (Gap)	Time	Obj. (Gap)	Time	Obj. (Gap)	Time
TSP	Concorde	9.79 (0.00%)	1.2m	9.48 (0.00%)	1.5m	12.39 (0.00%)	5.0m	11.73 (0.00%)	5.8m	17.09 (0.00%)	0.7h	15.66 (0.00%)	0.9h
	LKH3	9.79 (0.00%)	6.0m	9.48 (0.00%)	6.8m	12.39 (0.00%)	11.8m	11.73 (0.00%)	13.8m	17.09 (0.00%)	0.4h	15.66 (0.00%)	0.5h
	РОМО	10.23 (4.43%)	1.5m	9.88 (4.20%)	1.5m	13.63 (10.00%)	6.0m	12.89 (9.88%)	6.0m	20.74 (21.38%)	0.8h	18.94 (20.97%)	0.8h
	AMDKD-POMO	10.35 (5.69%)	1.5m	10.06 (6.15%)	1.5m	13.74 (10.85%)	6.0m	13.08 (11.52%)	6.0m	20.73 (21.25%)	0.8h	19.08 (21.85%)	0.8h
	Meta-POMO	10.22 (4.37%)	1.5m	9.87 (4.14%)	1.5m	13.56 (9.41%)	6.0m	12.84 (9.44%)	6.0m	20.51 (19.97%)	0.8h	18.77 (19.88%)	0.8h
	Ours-SO	10.14 (3.54%)	1.5m	9.78 (3.13%)	1.5m	13.39 (8.07%)	6.0m	12.64 (7.73%)	6.0m	20.37 (19.20%)	0.8h	18.59 (18.74%)	0.8h
	Ours	10.16 (3.74%)	1.5m	9.80 (3.35%)	1.5m	13.42 (8.30%)	6.0m	12.66 (7.90%)	6.0m	20.40 (19.36%)	0.8h	18.60 (18.80%)	0.8h
	Meta-POMO+FS ($K = 1$)	10.18 (3.96%)	6.8m	9.83 (3.70%)	6.8m	13.34 (7.60%)	0.5h	12.63 (7.66%)	0.5h	19.58 (14.52%)	6.5h	17.92 (14.48%)	6.5h
	Meta-POMO+FS ($K = 10$)	10.16 (3.69%)	0.9h	9.80 (3.41%)	0.9h	13.23 (6.75%)	4.1h	12.54 (6.84%)	4.1h	-	-	-	_
	Ours-SO+FS ($K = 1$)	10.12 (3.32%)	6.8m	9.76 (2.91%)	6.8m	13.19 (6.45%)	0.5h	12.45 (6.11%)	0.5h	19.53 (14.28%)	6.5h	17.79 (13.65%)	6.5h
	Ours+FS ($K = 1$)	10.13 (3.41%)	6.8m	9.77 (3.05%)	6.8m	13.20 (6.52%)	0.5h	12.51 (6.64%)	0.5h	19.53 (14.30%)	6.5h	17.75 (13.38%)	6.5h
CVRP	HGS	22.40 (0.00%)	1.3h	23.02 (0.00%)	1.3h	26.62 (0.00%)	4.5h	26.89 (0.00%)	4.6h	32.36 (0.00%)	30.9h	32.01 (0.00%)	37.7h
	LKH3	22.68 (1.28%)	0.7h	23.32 (1.28%)	0.7h	27.06 (1.69%)	0.9h	27.32 (1.61%)	0.9h	33.16 (2.51%)	1.6h	32.78 (2.43%)	1.6h
	РОМО	23.56 (5.30%)	1.8m	24.20 (5.30%)	1.8m	29.06 (9.48%)	6.9m	29.29 (9.29%)	6.9m	39.33 (22.44%)	1.0h	38.63 (21.73%)	1.0h
	AMDKD-POMO	23.54 (5.18%)	1.8m	24.24 (5.39%)	1.8m	29.06 (9.32%)	6.9m	29.33 (9.29%)	6.9m	39.72 (23.17%)	1.0h	38.86 (21.90%)	1.0h
	Meta-POMO	23.39 (4.54%)	1.8m	24.08 (4.71%)	1.8m	28.53 (7.34%)	6.9m	28.80 (7.32%)	6.9m	37.46 (16.09%)	0.9h	36.85 (15.52%)	0.9h
	Ours-SO	23.24 (3.83%)	1.8m	23.93 (4.07%)	1.8m	28.34 (6.60%)	6.7m	28.63 (6.69%)	6.7m	37.30 (15.62%)	0.8h	36.61 (14.83%)	0.8h
	Ours	23.23 (3.79%)	1.8m	23.94 (4.08%)	1.8m	28.29 (6.41%)	6.7m	28.60 (6.56%)	6.7m	37.02 (14.73%)	0.8h	36.40 (14.15%)	0.8h
	Meta-POMO+FS ($K = 1$)	23.29 (4.05%)	8.2m	23.96 (4.20%)	8.2m	28.13 (5.80%)	0.6h	28.43 (5.90%)	0.6h	36.14 (11.93%)	7.5h	35.78 (12.07%)	7.5h
	Meta-POMO+FS ($K = 10$)	23.23 (3.79%)	1.1h	23.90 (3.92%)	1.1h	27.95 (5.14%)	4.9h	28.24 (5.19%)	4.7h	-	-	-	-
	Ours-SO+FS ($K = 1$)	23.19 (3.61%)	8.2m	23.87 (3.78%)	8.2m	28.03 (5.41%)	0.6h	28.33 (5.52%)	0.6h	35.69 (10.52%)	7.4h	35.40 (10.92%)	7.4h
	Ours+FS ($K = 1$)	23.19 (3.59%)	8.2m	23.87 (3.79%)	8.2m	28.01 (5.34%)	0.6h	28.31 (5.44%)	0.6h	35.60 (10.26%)	7.4h	35.25 (10.45%)	7.4h

 \bigcirc

[1] Kwon, Yeong-Dae, et al. "Pomo: Policy optimization with multiple optima for reinforcement learning." In NeurIPS 2020.
[2] Bi, Jieyi, et al. "Learning Generalizable Models for Vehicle Routing Problems via Knowledge Distillation." In NeurIPS 2022.
[3] Manchanda, Sahil, et al. "On the Generalization of Neural Combinatorial Optimization Heuristics." In ECMLPKDD 2022.

Experiments

- Performance Evaluation on Benchmark Data^[1]
 - Zero-Shot
 - Active Search
- Ablation Study
 - On Components
 - On Hyperparameters
 - On Optimizers
 - On Normalization Layers
- Generalizability on L2D^[2]

		PO	мо	AMDKE	-РОМО	Meta-I	омо	Ours	
Instance	(Sub-)Opt.	Obj.	Gap	Obj.	Gap	Obj.	Gap	Obj.	Gap
XML100_1113	14740	15049	2.10%	15182	3.00%	15125	2.61%	15076	2.28%
XML100_1341	24931	25927	4.00%	25796	3.47%	26560	6.53%	26143	4.86%
XML100_2271	20100	21782	8.37%	21109	5.02%	21333	6.13%	20877	3.87%
XML100_3123	20370	20704	1.64%	20978	2.98%	20907	2.64%	20883	2.52%
XML100_3372	33926	37235	9.75%	37301	9.95%	37082	9.30%	36292	6.97%
XML500_1215	37174	39302	5.72%	39152	5.32%	38817	4.42%	38689	4.08%
XML500_1246	23205	25532	10.03%	25516	9.96%	25212	8.65%	25096	8.15%
XML500_1344	47944	51257	6.91%	51452	7.32%	50541	5.42%	50657	5.66%
XML500_3134	65408	69527	6.30%	69675	6.52%	69284	5.93%	68703	5.04%
XML500_3315	44783	47556	6.19%	47595	6.28%	47294	5.61%	47104	5.18%
XML1000_1276	42095	48226	14.56%	49132	16.72%	46358	10.13%	46342	10.09%
XML1000_1335	63968	72555	13.42%	72733	13.70%	70118	9.61%	69470	8.60%
XML1000_2256	30862	36202	17.30%	36448	18.10%	34908	13.11%	34182	10.76%
XML1000_2363	85618	96685	12.93%	95985	12.11%	94893	10.83%	93445	9.14%
XML1000_3113	169377	179276	5.84%	180583	6.62%	178765	5.54%	178171	5.19%
XML2000_1172	336322	392613	16.74%	416007	23.69%	414319	23.19%	395090	17.47%
XML2000_1214	194617	209676	7.74%	211107	8.47%	206678	6.20%	205204	5.44%
XML2000_1326	69613	97656	40.28%	95535	37.24%	84193	20.94%	83356	19.74%
XML2000_2216	56550	75417	33.36%	70690	25.00%	65542	15.90%	63906	13.01%
XML2000_3316	105108	120956	15.08%	129375	23.09%	119440	13.64%	116758	11.08%
XML3000_1141	800995	890313	11.15%	980642	22.43%	938765	17.20%	910961	13.73%
XML3000_2221	615170	667875	8.57%	703465	14.35%	656973	6.80%	674764	9.69%
XML3000_2322	400934	450847	12.45%	487873	21.68%	448146	11.78%	446922	11.47%
XML3000_3155	244524	328102	34.18%	308877	26.32%	285693	16.84%	271352	10.97%
XML3000_3313	427510	471327	10.25%	488874	14.35%	467088	9.26%	459396	7.46%
XML4000_1211	1296150	1397205	7.80%	1451127	11.96%	1360158	4.94%	1336333	3.10%
XML4000_1246	149850	190303	27.00%	198247	32.30%	173269	15.63%	174495	16.45%
XML4000_2153	330364	684832	107.30%	540420	63.58%	379186	14.78%	502960	52.24%
XML4000_3161	1516100	1694469	11.76%	1805507	19.09%	1755874	15.82%	1658308	9.38%
XML4000_3246	156226	292968	87.53%	206601	32.24%	184648	18.19%	183801	17.65%
XML5000_1241	1584020	1741474	9.94%	1778777	12.30%	1826274	15.29%	1718791	8.51%
XML5000_1321	1466910	1597897	8.93%	1886757	28.62%	1677306	14.34%	1647989	12.34%
XML5000_2224	315739	386773	22.50%	403097	27.67%	345626	9.47%	352382	11.61%
XML5000_3135	396487	892760	125.17%	755735	90.61%	477590	20.46%	449778	13.44%
XML5000_3372	1135140	1273886	12.22%	1522414	34.12%	1438497	26.72%	1293027	13.91%

[1] Queiroga, Eduardo, et al. "10,000 optimal CVRP solutions for testing machine learning based heuristics." AAAI-22 Workshop on Machine Learning for Operations Research (ML4OR). 2022. [2] Li, Sirui, Zhongxia Yan, and Cathy Wu. "Learning to delegate for large-scale vehicle routing." In NeurIPS 2021.

Future Work

- Improve training efficiency and scalability
- Advanced meta-learning algorithms^[1]
- Cross-problem generalization^[2]

[1] Flennerhag, Sebastian, et al. "Bootstrapped meta-learning." In ICLR 2022. [2] Wang, Chenguang, and Tianshu Yu. "Efficient Training of Multi-task Neural Solver with Multi-armed Bandits." arXiv preprint arXiv:2305.06361 (2023).

Authors: Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang

Presenter: Jianan Zhou