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The Scaling Law and Emergent Abilities
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Larger models require fewer samples
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Model scale (training FLOPs)

e Scaling up language models can give us unpredictable capabilities (emergent abilities).
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Scaling Laws for Neural Language Models (Kaplan et al., 2020)
Emergent Abilities of Large Language Models (Wei et al., 2022)



Model Compression for LLMs is Important

e LLM sizes and computation are increasing exponentially. Model Compression with:

e Quantization (SmoothQuant) <= today’s focus: training-free, model-in & model-out.

e Token pruning (SpAtten)

e Neural architecture search (HAT, Lite-Transformer)
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Quantization Can Reduce Deployment Costs

e Serving LLMs is extremely expensive.

e E.g., serving a 175B GPT-3 model at least requires:
e FP16: 350GB memory kd 5 x 80GB A100 GPUs | JE .

e INT8: 175GB memory kd 3 x 80GB A100 GPUs /I I .

{ 10 axceptionally high demand, Please hang Bot as T J )

Your A n
Ch atG PT iS at Write a rap about the status of ChatGPT. our Account
CapaCity rlght now Yeah, yo, what's up ChatGPT fam 1R €90 frr
A lot of people trying to jam Free Plan ChatGPT PIUS ILJ PLV/ITIV
Get notified when we're back But don't worry, we got your back

Upgrade plan

ChatGPT's the place to be
For all your Al chat needs (4 Available when demand is low Due to high demand, we've
We're working hard to keep up the pace @ S TS TR SR temporarily paused upgrades.

So hold tight, we'll be back in this space

Just check back soon, we'll get on track | | ' DI-

@ Regular model updates Priority access to new features

So don't you worry, don't be mad

We're working hard, it's not so bad

Just give us time, we'll be back
ChatGPT, the future of chat, that's a fact.
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| Linear Quantization

An affine mapping of integers to real numbers r = S(g — 7)

Fmin 0 Fmax
I/. Floating-point range ‘
Floating-point
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Floating-point Scale

Bit Width| qgmi Omax

Integer min Z Amax 5 _;n I:a
Zero point 8 | 4 | 3
________________ 4 .8 L
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Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

MIT 6.5965: TinyML and Efficient Deep Learning Computing

https://efficientml.ai
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e Systematic outliers emerge in activations when we scale up LLMs beyond 6.7B. Naive but efficient

guantization methods will destroy the accuracy.

* The accuracy-preserving baseline, LLM.int8() uses FP16 to represent outliers, which needs runtime
outlier detection, scattering and gathering. It is slower than FP16 inference.

H
I I I I I LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022) I . I I‘\ N I = I‘\ I = 7



SmoothQuant: Accurate and Efficient
Post-Training Quantization for LLMs
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(b) SmoothQuant

 We propose SmoothQuant, an accurate and efficient post-training-quantization (PTQ) method to enable 8-bit
weight, 8-bit activation (W8A8) quantization for LLMs.

* Since weights are easy to quantize while activations are not, SmoothQuant smooths the activation outliers by
migrating the quantization difficulty from activations to weights with a mathematically equivalent transformation.
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LLMs are difficult to quantize because:

e Activations are harder to quantize than weights

e Qutliers make activation quantization difficult

e Qutliers persist in fixed channels

Review the Quantization Difficulty of LLMs

Weight (SmoothQuant)
Harder but still easy to quantize
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Review the Quantization Difficulty of LLMs

e Activations are harder to quantize than weights
Previous work has shown quantizing the weights of LLMs with INT8 or even INT4 doesn’'t degrade accuracy.
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LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)

H H
Illll GLM-130b: An open bilingual pre-trained model (Zeng et al., 2022) IIIAN I_AI: 10



Review the Quantization Difficulty of LLMs

e Qutliers make activation quantization difficult

The scale of outliers is ~100x larger than most of the activation values.
If we use INT8 quantization, most values will be zeroed out.
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Ill' — Understanding and overcoming the challenges of efficient transformer quantization (Bondarenko et al., 2021) I II\ N I I\I
" LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022) = 11



Review the Quantization Difficulty of LLMs

e Qutliers persist in fixed channels
Fixed channels have outliers, and the outlier channels are persistently large.
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Quantization Schemes

per-tensor quant.

per-tensor quant.
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Model size 678 13B 30B 66B 175B per-token quant per-channel quant
(b) per-token + per-channel quantization
FP16 64.9% 65.6% 67.9% 69.5% 71.6%
INTS per-tensor  39.9% 33.0% 32.8% 33.1% 32.3% FP16
INTS per-token ~ 42.5% 33.0% 33.1% 32.9% 31.7% XINTS _ [X [, A= max(| X |)
A ON-1 _ ]

Among different activation quantization schemes, only
per-channel quantization preserves the accuracy, but
it is not compatible with INT8 GEMM kernels.

H H
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Review the Quantization Difficulty of LLMs
/ Migrate the quantizatio\
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e Activations are harder to quantize than weights
e Qutliers make activation quantization difficult

e Qutliers persist in fixed channels

» We can smooth the outlier channels in activations by
migrating their magnitudes into the following weights! FIANIL AL ..
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Activation Smoothing
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Activation Smoothing

1.Calibration Stage (Offline):

Abs Max
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Activation Smoothing

multiply the input channel

2. Smoothing Stage (Oftline): of the following weight by s
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Activation Smoothing

3. Inference (deployed model):

X 2 1 -2
1 4 2 2 4 -4 4
-2 2 -1 -3 ) 2 | -1|-2
At runtime, the activations are smooth -3 -3 3
and easy to quantize "
Y = XW

i IFIAN LAl



Ablation Study on the Migration Strength o
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e Migration strength a controls the amount of quantization difficulty migrated from activations to weights.
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e A suitable migration strength a (sweet spot) makes both activations and weights easy to quantize.

e If the a is too large, weights will be hard to quantize; if too small, activations will be hard to quantize.

A\

Y = (Xdiag(s)™) - (diag(s)W) = XW
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System Implementation

r N
FP16 )
INT8 — . C L.
' Method Weight Activation
WEAS per-tensor  per-tensor dynamic
( e ) ZeroQuant group-wise per-token dynamic

LIM.int8 () per-channel per-token dynamic+FP16
Outlier Suppression per-tensor per-tensor static

( Softmax )

SmoothQuant-O1  per-tensor per-token dynamic
SmoothQuant-O2  per-tensor per-tensor dynamic
SmoothQuant-O3  per-tensor per-tensor static

L D D )

 SmoothQuant’s precision mapping for a Transformer block. e Quantization setting of the baselines and SmoothQuant. All

. . . weight and activations use INT8 representations unless specified.
* All compute-intensive operators, such as linear layers and

batched matrix multiplications (BMMs) use INT8 arithmetic.  We implement three efficiency levels of quantization settings for

SmoothQuant. The efficiency improves from O1 to O3.

i IFIAN LAl %



Method OPT-175B BLOOM-176B GLM-130B*
FP16 71.6% 68.2% 73.8%
WSAS 32.3% 64.2% 26.9%
ZeroQuant 31.7% 67.4% 26.7%
LIM.1int8 () 71.4% 68.0% 73.8%
Outlier Suppression  31.7% 34.1% 63.5%
SmoothQuant-O1 71.2% 68.3% 73.7 %
SmoothQuant-O2 71.1% 68.4% 72.5%
SmoothQuant-O3 71.1% 67.4% 72.8%
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e SmoothQuant well maintains the accuracy without finetuning.
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SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models (Xiao et al., 2022)
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e SmoothQuant can both accelerate inference and halve the memory footprint.
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Scaling Up: 530B Model Within a Single Node

LAMBADA HellaSwag PIQA WinoGrande Average

MT-NLG 530B Accuracy  Fpi6  76.6% 621% 81.0% 729%  73.1%
INTS  77.2% 60.4% 80.7%  741%  73.1%

Seqlen Prec.  #GPUs  Latency Memory

o 512 FP16 838ms  1068GB Ei!

MT-NLG 530B Efficiency INT8 [ 8 | 839ms  545GB i@
1024 FP16 16 1707/ms  1095GB
INTS 8 1689ms  570GB

SmoothQuant can accurately quantize MT-NLG 530B model and reduce the serving GPU
numbers by half at a similar latency, which allows serving the 530B model within a single node.

e I'IAN L.Al3 2



SmoothQuant on Instruction-Tuned LLMs

OPT-IML-30B LAMBADA T WikiText |
FP16 69.12% 14.26
WEAS 4.21% 576.53
ZeroQuant 5.12% 455.12
LLM.1nt8() 69.14% 14.27
Outlier Sppression 0.00% 9485.62
SmoothQuant-O1 69.94% 14.33
SmoothQuant-O2 69.51% 14.35
SmoothQuant-O3 69.77% 14.37

SmoothQuant works well on instruction-tuned LLM, the backbones of recent chat bots.

e IFIAN L.Ala



] SmoothQuant A

Advancing new efficient open model LLaMA mootiluant - S

>

dun int8 I

- LLaMA (and its successors like Alpaca) are popular fple -
open-source LLMs, which introduced SwishGLU, making activation quantization even harder

- SmoothQuant can losslessly quantize LLaMA families, further lowering the hardware barrier

PIQAT LLaMA 7B LLaMA 13B LLaMA 30B LLaMA 65B
FP16 78.24% 79.05% 80.96% 81.72%
SmoothQuant 78.24% 78.84% 80.74% 81.50%
Wikitext! LLaMA 7B LLaMA 13B LLaMA 30B LLaMA 65B
FP16 11.51 10.05 7.53 6.17
SmoothQuant 11.69 10.31 7.71 6.68

WB8AS per token



https://efficientml.ai

| SmoothQuant

Going smaller: W4A4 (FP4)

 Can we further push the frontier?
 We evaluate the W4A4 quantization

SmoothQuant
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» Setting: FP4 data type with a group size of 64; FP16 accumulator and FP16 scaling factor

. ppl degrade > 0.5,

wikitext2 llama-7b
fp16 949
w4a4-m1e2-g64 10.2676

opt-6.7b
fp16

w4a4-m1e2-g64
w4a4-mie2-g64

15.12
16.2289
15.5899

w4a4-m192-g64 10.1437

llama-30b llama-65b
6.91 4.96
8.1453 5.4746
7.0089 5.4336

opt-13b opt-30b

14.13 13.09
14.7355 13.6172
14.5469 13.3931

. ppl degrade < 0.5. SmoothQuant helps most of the time.
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Conclusion

e We propose SmoothQuant, a turn-key solution to enable accurate W8AS8 quantization
for large language models.

e SmoothQuant is accurate and efficient on existing hardware. We can implement
SmoothQuant with off-the-shelf kernels to achieve high speedup and memory saving.

e |ntegration
e NVIDIA: FasterTransformer

e [ntel: Neural Compressor
e OpenNMT: CTranslate2

[=]

[=]
i IFIANL.A
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e Paper: https://arxiv.org/abs/2211.10438
e Code: https://github.com/mit-han-lab/smoothquant

26


https://arxiv.org/abs/2211.10438
https://github.com/mit-han-lab/smoothquant
https://github.com/NVIDIA/FasterTransformer/blob/main/docs/gpt_guide.md
https://github.com/intel/neural-compressor
https://opennmt.net/CTranslate2/python/ctranslate2.converters.TransformersConverter.html

