
SmoothQuant: Accurate and Efficient
Post-Training Quantization for Large Language Models

Guangxuan Xiao*,1, Ji Lin*,1,
Mickael Seznec2, Hao Wu2, Julien Demouth2, Song Han1

* Equal contribution

1 MIT 2 NVIDIA

Large Language Models (LLMs) Are Powerful

and more…
2

ChatBots Scientific Discovery

Software Development Disability AidTransformer Architecture

Attention Is All You Need (Vaswani et al., 2017)

The Scaling Law and Emergent Abilities

• Scaling up language models can give us unpredictable capabilities (emergent abilities).

3
Scaling Laws for Neural Language Models (Kaplan et al., 2020)
Emergent Abilities of Large Language Models (Wei et al., 2022)

Model Compression for LLMs is Important
• LLM sizes and computation are increasing exponentially. Model Compression with:

• Quantization (SmoothQuant) <= today’s focus: training-free, model-in & model-out.

• Token pruning (SpAtten)

• Neural architecture search (HAT, Lite-Transformer)

4

Quantization Can Reduce Deployment Costs
• Serving LLMs is extremely expensive.

• E.g., serving a 175B GPT-3 model at least requires:

• FP16: 350GB memory ➡ 5 x 80GB A100 GPUs

• INT8: 175GB memory ➡ 3 x 80GB A100 GPUs

5

MIT 6.S965: TinyML and Efficient Deep Learning Computing https://efficientml.ai

Linear Quantization
An affine mapping of integers to real numbers r = S(q − Z)

6
Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

r
rmin

q

rmax

Z

0

× S

qmin qmax

Floating-point

Integer

Floating-point Scale

Zero point

Floating-point range

Bit Width qmin qmax

2 -2 1
3 -4 3
4 -8 7
N -2N-1 2N-1-1

https://efficientml.ai

Existing Quantization Method is Slow or Inaccurate

7

• Systematic outliers emerge in activations when we scale up LLMs beyond 6.7B. Naive but efficient
quantization methods will destroy the accuracy.

• The accuracy-preserving baseline, LLM.int8() uses FP16 to represent outliers, which needs runtime
outlier detection, scattering and gathering. It is slower than FP16 inference.

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)
La

te
nc

y
(m

s)

0

100

200

300

400

OPT-13B sequence length
128 256 512

223

112

63

371

237
190

296

153

84

FP16 LLM.int8() SmoothQuant

SmoothQuant: Accurate and Efficient
Post-Training Quantization for LLMs

8

outlier
pe

r-c
ha

nn
el

 m
ax

low effective bits

maxCi
(X)

maxCi
(W)

pe
r-c

ha
nn

el
 m

ax maxCi
(X̂) maxCi

(Ŵ)smoothed

(a) Original

(b) Smoothed

hard to quantize very easy to quantize

easy to quantize easy to quantize

determines quant. range
|X | |W |

qu
an

t.
le

ve
ls

̂|X | ̂|W |smoothed

(a) Original

(b) SmoothQuant

hard to quantize very easy to quantize

easy to quantize easy to quantize

outlier

low effective bits

qu
an

t.
le

ve
ls 10 0.1

1 1

0

0

0

0

migrate difficulty

LLM (100B+)
Accuracy

Hardware
Efficiency

ZeroQuant ✘ ✔

Outlier
Suppression ✘ ✔

LLM.int8() ✔ ✘

SmoothQuant ✔ ✔

• We propose SmoothQuant, an accurate and efficient post-training-quantization (PTQ) method to enable 8-bit
weight, 8-bit activation (W8A8) quantization for LLMs.

• Since weights are easy to quantize while activations are not, SmoothQuant smooths the activation outliers by
migrating the quantization difficulty from activations to weights with a mathematically equivalent transformation.

Review the Quantization Difficulty of LLMs

9

• Activations are harder to quantize than weights

• Outliers make activation quantization difficult

• Outliers persist in fixed channels

Activation (Original) Activation (SmoothQuant) Weight (Original) Weight (SmoothQuant)

A
bs

ol
ut

e
Va

lu
e 70

Hard to quantize Very easy to quantizeEasy to quantize Harder but still easy to quantize

Smooth

Migrate the quantization
difficulty

LLMs are difficult to quantize because:

Review the Quantization Difficulty of LLMs

10

Activation (Original)

A
bs

ol
ut

e
Va

lu
e

70

Hard to quantize
Weight (Original)

Very easy to quantize

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)

GLM-130b: An open bilingual pre-trained model (Zeng et al., 2022)

• Activations are harder to quantize than weights
 Previous work has shown quantizing the weights of LLMs with INT8 or even INT4 doesn’t degrade accuracy.

Review the Quantization Difficulty of LLMs

11
Understanding and overcoming the challenges of efficient transformer quantization (Bondarenko et al., 2021)

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)

• Outliers make activation quantization difficult
 The scale of outliers is ~100x larger than most of the activation values.
 If we use INT8 quantization, most values will be zeroed out.

Activation (Original)

A
bs

ol
ut

e
Va

lu
e

70

Hard to quantize

Review the Quantization Difficulty of LLMs

12Understanding and overcoming the challenges of efficient transformer quantization (Bondarenko et al., 2021)

• Outliers persist in fixed channels
 Fixed channels have outliers, and the outlier channels are persistently large.

Activation (Original)

A
bs

ol
ut

e
Va

lu
e

70

Hard to quantize

Quantization Schemes

13

X * W
T

Ci

Co
 Ci

sCo
[1×C0]

X * W
T

Ci
Co

 Ci

sW[1]
sX[1]

sCo
[1]

sX[1]

per-tensor quant. per-tensor quant.

(a) per-tensor quantization
sT[T×1]

X * W
T

Ci
Co

 Ci

sCo
[1×C0]

per-token quant. per-channel quant.
(b) per-token + per-channel quantization

X * W
T

Ci
Co

 Ci

sW[1]
sX[1]

per-tensor quant. per-tensor quant.

(a) per-tensor quantization
sT[T×1]

X * W
T

Ci
Co

 Ci

sCo
[1×C0]

per-token quant. per-channel quant.
(b) per-token + per-channel quantization

X * W
T

Ci
Co

 Ci

ΔW
[1]

ΔX
[1]

per-tensor quant. per-tensor quant.

(a) per-tensor quantization
ΔX

[T×1]

X * W
T

Ci
Co

 Ci

ΔW
[1×C0]

per-token quant. per-channel quant.
(b) per-token + per-channel quantization

Y = diag(ΔFP16
X) ⋅ (X̄INT8 ⋅ W̄INT8) ⋅ diag(ΔFP16

W)

X̄INT8 = ⌈
XFP16

Δ
⌋, Δ =

max(|X |)
2N−1 − 1

Activation (Original)

A
bs

ol
ut

e
Va

lu
e 70

Hard to quantize

Among different activation quantization schemes, only
per-channel quantization preserves the accuracy, but
it is not compatible with INT8 GEMM kernels.

Understanding and overcoming the challenges of efficient transformer quantization (Bondarenko et al., 2021)

Review the Quantization Difficulty of LLMs

14

• Activations are harder to quantize than weights

• Outliers make activation quantization difficult

• Outliers persist in fixed channels

Activation (Original) Activation (SmoothQuant) Weight (Original) Weight (SmoothQuant)

A
bs

ol
ut

e
Va

lu
e 70

Hard to quantize Very easy to quantizeEasy to quantize Harder but still easy to quantize

Smooth

Migrate the quantization
difficulty

We can smooth the outlier channels in activations by
migrating their magnitudes into the following weights!

Activation Smoothing

15

sj = max(|Xj |)α / max(|Wj |)1−α, j = 1,2,…, Ci

Y = (Xdiag(s)−1) ⋅ (diag(s)W) = X̂Ŵ

: Migration Strengthα

*
2 1 -2
4 -4 -4

2 -1 -2

-3 -3 3

*

X

W Ŵ = diag(s)W

X̂ = X diag(s)−1

1 -4 2 2

-2 2 -1 -3

2 16 2 9

1 -16 2 6
-2 8 -1 -9

2 1 -2
1 -1 -1

2 -1 -2

-1 -1 1

2
1

2

1

Original: SmoothQuant:

1 4 1 3
s = max |X | / max |W |

Abs Max
A

bs
 M

ax

Activation Smoothing

16

sj = max(|Xj |)α / max(|Wj |)1−α, j = 1,2,…, Ci

: Migration Strengthα

*

X

W

2 16 2 9

1 -16 2 6

-2 8 -1 -9

2 1 -2

1 -1 -1

2 -1 -2

-1 -1 1

2

1

2

1

1.Calibration Stage (Offline):

1 4 1 3

s = max |X | / max |W |

Abs Max
A

bs
 M

ax
2 16 2 9

2 1 2 1
÷

max |W |max |X |
(α = 0.5)

max |X |

max |W |

Activation Smoothing

17

sj = max(|Xj |)α / max(|Wj |)1−α, j = 1,2,…, Ci

Y = (Xdiag(s)−1) ⋅ (diag(s)W) = X̂Ŵ

: Migration Strengthα

1 4 1 3s

2 1 -2
4 -4 -4

2 -1 -2

-3 -3 3

X

W Ŵ = diag(s)W

X̂ = X diag(s)−1

1 -4 2 2

-2 2 -1 -3

1 -16 2 6
-2 8 -1 -9

2 1 -2
1 -1 -1

2 -1 -2

-1 -1 1

2. Smoothing Stage (Offline):

divide the output channel
of the previous layer by s

1

4

1

3
÷

=
×

s

=

multiply the input channel
of the following weight by s

Activation Smoothing

18

Y = X̂Ŵ

2 1 -2
4 -4 -4

2 -1 -2

-3 -3 3

Ŵ

X̂

1 -4 2 2

-2 2 -1 -3

3. Inference (deployed model):

*

At runtime, the activations are smooth
and easy to quantize

Ablation Study on the Migration Strength α

19

• Migration strength controls the amount of quantization difficulty migrated from activations to weights.

• A suitable migration strength (sweet spot) makes both activations and weights easy to quantize.

• If the is too large, weights will be hard to quantize; if too small, activations will be hard to quantize.

α

α

α

sj = max(|Xj |)α / max(|Wj |)1−α, j = 1,2,…, Ci Y = (Xdiag(s)−1) ⋅ (diag(s)W) = X̂Ŵ

System Implementation

20

• SmoothQuant’s precision mapping for a Transformer block.

• All compute-intensive operators, such as linear layers and
batched matrix multiplications (BMMs) use INT8 arithmetic.

FC1

LayerNorm

Q K V

BMM

Softmax

BMM

Projection

LayerNorm

ReLU

FC2

FP16

INT8

+ +

FC1

LayerNorm

Q K V

BMM

Softmax

BMM

Projection

LayerNorm

ReLU

FC2

FP16

INT8

+ +

• Quantization setting of the baselines and SmoothQuant. All
weight and activations use INT8 representations unless specified.

• We implement three efficiency levels of quantization settings for
SmoothQuant. The efficiency improves from O1 to O3.

Song Han: Slide Title https://efficientml.ai

SmoothQuant is Accurate and Efficient

21
SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models (Xiao et al., 2022)

• SmoothQuant well maintains the accuracy without finetuning.

• SmoothQuant can both accelerate inference and halve the memory footprint.

0

225

450

675

900

128 256 512 1024

720

366

194

122

848

432

228

139

FP16 (8 GPUs) SmoothQuant (4 GPUs)

0

100

200

300

400

128 256 512 1024

200189184182

389378372369

OPT-175B

M
em

or
y

(G
B

)

La
te

nc
y

(m
s)

https://efficientml.ai

Scaling Up: 530B Model Within a Single Node

22

SmoothQuant can accurately quantize MT-NLG 530B model and reduce the serving GPU
numbers by half at a similar latency, which allows serving the 530B model within a single node.

MT-NLG 530B Accuracy

MT-NLG 530B Efficiency

SmoothQuant on Instruction-Tuned LLMs

23

SmoothQuant works well on instruction-tuned LLM, the backbones of recent chat bots.

Song Han: Slide Title https://efficientml.ai

SmoothQuant
Advancing new efficient open model LLaMA

- LLaMA (and its successors like Alpaca) are popular  
open-source LLMs, which introduced SwishGLU, making activation quantization even harder

- SmoothQuant can losslessly quantize LLaMA families, further lowering the hardware barrier

24
W8A8 per token

PIQA↑ LLaMA 7B LLaMA 13B LLaMA 30B LLaMA 65B

FP16 78.24% 79.05% 80.96% 81.72%

SmoothQuant 78.24% 78.84% 80.74% 81.50%

Wikitext↓ LLaMA 7B LLaMA 13B LLaMA 30B LLaMA 65B

FP16 11.51 10.05 7.53 6.17

SmoothQuant 11.69 10.31 7.71 6.68

SmoothQuant

int8
fp16

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

SmoothQuant
Going smaller: W4A4 (FP4)

• Can we further push the frontier?

• We evaluate the W4A4 quantization

• Setting: FP4 data type with a group size of 64; FP16 accumulator and FP16 scaling factor

- Red: ppl degrade > 0.5, Green: ppl degrade < 0.5. SmoothQuant helps most of the time.

25

SmoothQuant Grouping+
SmoothQuant

int8
fp4

fp16

https://efficientml.ai

Conclusion

• Paper: https://arxiv.org/abs/2211.10438

• Code: https://github.com/mit-han-lab/smoothquant

• We propose SmoothQuant, a turn-key solution to enable accurate W8A8 quantization
for large language models.

• SmoothQuant is accurate and efficient on existing hardware. We can implement
SmoothQuant with off-the-shelf kernels to achieve high speedup and memory saving.

• Integration
• NVIDIA: FasterTransformer

• Intel: Neural Compressor

• OpenNMT: CTranslate2

26

https://arxiv.org/abs/2211.10438
https://github.com/mit-han-lab/smoothquant
https://github.com/NVIDIA/FasterTransformer/blob/main/docs/gpt_guide.md
https://github.com/intel/neural-compressor
https://opennmt.net/CTranslate2/python/ctranslate2.converters.TransformersConverter.html

