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INTRODUCTION EXPECTED UTILITY MAXIMISATION EVALUATING PERCEPTION VIA PLANNING EMPIRICAL STUDY
e Problem ¢ Planning as expected utility maximisation (EUM) |4| 1] e Given ¢(s), a* is preferred over a by EUM if and only if e Basic settings
o Real-world road tests for autonomous driving are costly. AV: an intelligent agent striving for the maximum reward: E(g;a™,a) >0 (4) o Production-grade module-based level-4 AV planners validated across megacities.
o How to evaluate the impact of perception errors on a* = argmax,.p PU(Fs,a), EU(Fs,a):=E [U (S, a)} . (1) with the a-fg preference score given ¢q (Va, 5 € D, ) o 1000 5-second scenarios (30-500 obejcts) with human annotation as GT for object detection.
3 1 ? . . . . o o o o S o S S
an autonomous vehicle (AV) offline’ a*: the optimal action given the ground truth perception; &(q; @, 8) = (g, AU, B)) = EU(g,0) — EU(¢,8).  (5) || o Results on synthetic data O T, -
' U: the utility function (reward of doing a in state S); : . g . 3 S 3 3 g
* Baselines D - the set yf 1§ 'bg AV actions: 5 ) e The a*-a preference score (and the EUM result) may be af- oA wvariery of sythetic _ T . ;- : e N
o Traditional metrics: nuScenes detection score (NDS) |1] a- v0E SEL OL 8. TEASIDIE AV abLIOLs, , fected by the perception error Ay = g — pip: noises are added to GT. ¢ 3 3 3 g g SFEw
S E S: the Word State dlStrlbUted aS FS(S) ]‘n Space S' k sk sk i #é%alseéposit?ve - O'r(;\issoezclzl deot:éctic())frat(é4 olloocat(:)i:?)n eori:ors(;:ciii (mo):8 i ya\élverrtl)orstgsﬁ) ? \(/)eloicityéerrorsztcd (m/sé) o siz();Zerrg::stdO:(Gm) o
Iegnore the response of an AV to errors. | i} A&(a*,a;q,p) = &(q;a*,a) — E(p;a™,a) = (Ap, AU),,. o TIP renders better con- _ . . . o |
. . . e UM in the Hilbert space H : : . q Figure 4: Metric comparison on different synthetic noises. The left (right)
o AV-centric metrics: support distance error (SDE) |2] - , , e A1, can be decomposed into two orthogonal components: sistency 1n sensitivity and oo 4:.a1 axes are for NDS and SDE-APD (PKL and TIP).
, , Theorem 1 (Probability Measure Embeddings in H) Let {X,d} resolution
Prior knowledge and handcrafted rules incoporated for - - . Ap=Ap +Ap . (6) | o oo
o 1 defeated by th " o be a compact metric space with d as the metric, p be a Borel | L o Miss detection case study: i o I D, o
metric design easlly deteated by the problem complexity. probability measure on X, and X be a random variable on X 0 A,u”: the projection of Au onto behaviour direction nagy TIP deems the one ai; §: NDS T o PKLT (V-1 :g:ﬁyﬁfw-l)g,%% §: éé
o Result-centric metrics: planner KL divergence (PKL) |3] with distribution function Fx(z). If Fx (x) is absolutely contin- Apy = (Ap, Ay )y n nau = AU/||AU| (7) | . G| ooewnr Ehreroavn wien TV 43
: . th : t bl d t f t L2 MH o M’ AU ?‘L AU’ AU - 7‘[ ) the AV St()pplng dlStance location of miss detection on the x axis (m) location of miss detection on the x axis (m)
Rely on weak correlation between the change in AV be- uous with a square-integrable density function fx (fx € ); 1 ot - Figure 5: Miss detection for different planners. On the z-axis: (i) a miss
. . then there exists a unique element 1. € H such that o Ap, € span({AU})—: the projection of Au onto the or- (a barely avoidable one) C ¢ , g
haviour (the planning result) and the error consequnce. < unigqu p u h 1 1 fth b d by Al , detected stationary obstacle; (ii) a stationary vehicle (x=50m); (iii) an AV
4 . \ N 7 [g(a:')] = (up,9)a, , Vg € H, (2) thogonal complement ol the subspace spanned Dy ' most serious, as opposed moving forward (x=0, 14m/s). AV-1(2): optimised for comfort (safety),
: F\ )y : 5 . , : : : to other baselines. braking capped at -4 (-6) m/s?. The stopping distance is 30m (20m).
: - 1 ground truth where element 11, denotes the embedding of probability measure e T'IP score: overall impact of a perception error on planning | S m_ (-6) L?/ o o e go ( )
. : pereeption oufput p in the Hilbert space H = (L?,{-,-)), with the inner product F(q,p;U,D,) = mingep. A&(a™,a;q,p) <O0. (8) 1 °® Results on real data ) ' i R
73 7% — i " given by (g,h),, = [ g(z)h(x)dx . o Onboard 3D object detector: a 3 e | k
w w .- behaviour based on . o : pillar-based LiDAR network. . e E E
@ - o @ |- perception outout With the embedding, the EUM of (1) can be rewritten as OBSERVATIONS - | Lok = g |
i . T ‘ ' ' ' ' \ o 'I'he optimal training ckeckpoint E
Figure 1: The change in AV behaviour due to a perception €ITor 1S 0F — argmax () [U (8, a)] — argmax <,Up7 Ua> YU, € H. ‘ | P | . g P L é—v—é o s .
not always correlated to the consequence. The error consequence 11 (a,) acD, acD, H ‘; %p Flgure 3: An example of PCE A,LL” and for plannlng 1S not the last one. training epoch TIP
(‘making a large detour’) is far less significant than that in (b) (‘hitting | PIE Ap,. An AV is moving forward on TIP find s eal that Figure 6: Metric comparison on real data. Left: metrics on
an object’), though the trajectory change in the former is greater. In — ] ‘A ¢ Figure 2: Illustration of EUM in H. i 5 a 6m-wide road; a cone is in front on a © s CT 1.(38, CITOIS . = different training checkpoints. Middle: scatter plot of TIP/PKL
(c) the consequence of either way is almost indifferent to the AV, yet the , £(q) \:f\/ p: ground truth (GT) : line across the road (the z axis). The GT only cause minor behaciour scores of different scenes. Right: the first one is a GT scene; the
change in behaviour is considerable. In (d), two falsely detected cones 2) g: perception result distribution of its location p is Z/{[_ 3,—2] Changes (data, points close to second one shows an outrageous false positive (highlighted by red
are close to the AV on both sides when passing by without collision; AU = U, — Ug,: utility difference | T (a uniform distribution over [—3, —2]); the the r-axis in the scatter plot). arrows), which causes a jerk of —76.4m/ s (the typical limit is
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the AV decides to move forward as in the ground truth case—the AV’s
behaviour remains unchanged regardless of the perception error.

nAp: behaviour direction
£: a™-a preference score
A¢&: change of a*-a preference score

Up/g: embedding of p/q

around —1.0m/s?), despite a mild change in behaviour per PKL.

perception result is q = Z/{[_l,o]. The
—— ———— | 2m-wide AV can either (i) keep moving
fraeeaaas FUUUEUE F forward (a*, the solid arrowhead) with
Ui(z) = —10-1,¢7_1,1) (x is the cone po-
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APPLICATION TO NEURAL PLANNERS

¢ Our solution: transcendental idealism of planner (TIP)

o Evaluate the change in the planning process due to a Ap: perception error - e sition); or (ii) hard brake to a full stop ™ 1ol (outs AV oad W roud divie / B Fube Positive |
. . . . 1 _ 111 " EEw . O e NN1éelura anner Ou 11 S B object W lane boundary False Negative
perception error to infer the consequence unbiasedly. Ap: planning-critical error (PCE) ff. .. l l T before the line (a, the dashed arrowhead) tatp , b it | | I
Ap : planning-invariant error (PIE) = 7 with Us(x) = —5 (loss of hard braking is probablistic locations |3]. p il L L salS)
2 v ]_ - R constant). In this example, PCE (PIE) ac- . =l s ot il R el [ e—
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Figure 8: Significance (indicated by opacity) of false positives

grouping and sampling for point cloud 3d object detection. arXiv : object interaction.
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