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OBJECTIVES

The lack of real-time interactions makes offline RL, in general, notoriously
challenging, as value estimators can suffer from potential exponentially
increasing variance in terms of the temporal horizon [1].

— training trajectory
= Ty expected trajectory

error scales as O(T2)

it is still an open problem to design an offline RL method that is less
affected by the horizon and solves the long-horizon problem effectively.




OBJECTIVES

To deal with long temporal extension, an alternative RL solution is to
decompose a long-horizon task into a hierarchy of subproblems, i.e., by
hierarchical reinforcement learning (HRL), which also sees its utilization in
offline decision-making. Unfortunately, the instabilities of these methods
due to the deadly triad, limited data access, and reward sparsity still
remain largely unresolved.

The success of RL methods leveraging conditional generative models on
standardized benchmarks motivates us to consider the following question:

Can the above challenges be mitigated or even avoided using a
conditional generation model that introduces a hierarchical structure?




CONTRIBUTIONS

O Introducing goals into the control-as-inference framework and
formulating offline long-horizon decision-making as conditional
generative modeling;

L Employing a hierarchical framework, HDMI, in which the goal diffuser
learns a reward-conditional diffusion for the subgoal discovering, and
the trajectory diffuser learns a goal-conditional diffusion for the action
generation;

O Utilizing a planning-based subgoal extractor and transformer-based
diffusion to deal with the sub-optimal data pollution and long-range
subgoal dependency issues.




OVERALL ARCHITECTURE

Goal Diffuser
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Trajectory Diffuser

We first sample the subgoals based on the return and then sample the
actions corresponding to the subgoal. We use receding horizon control to
avoid error accumulation due to stochastics.




CONDITIONAL GENERATIVE MODELING

To take advantage of the generative model, we need to transform the
offline long-horizon decision-making, i.e., obtaining the most probable
subgoal and action distributions that maximize the expected return, into a
goal-based, conditional generative modeling problem.



CONDITIONAL GENERATIVE MODELING

Graphic models for decision-making: (a) The states and actions form the
backbone of the graphic model; (b) Augmenting goals to embed a long-
horizon problem into this graphic model; (c) By summarizing the goal-
augmented optimality variables, the new goal-oriented graphic model
more naturally models the probability distribution of subgoals and
highlights the hierarchical structure. Similar with [2], we condition the
optimality variables as being true and then infer the most probable
higher-level subgoal and lower-level action sequence or distributions.




CONDITIONAL GENERATIVE MODELING

With Proposition 2.2, we transform
offline decision-making into the
goal-based, conditional generative
modeling with a hierarchical form.
We will further introduce how to
construct the training dataset,
parameterize and train the model
based on the dataset, and finally
sample our interested subgoal and
action sequences from it.

Proposition 2.2. Given a subgoal sequence T4 :=
go:N—1 and the corresponding trajectory Tsq ‘=
{so.r—1,a0.7-1}, T = N % M, the conditional
probability in Equation (1) can be transformed into
following form based on the graphic model shown
in Figure 2c:

N . .
p (70 | y(70)) o< p(79)y(7g) ITiz1 P(T50)¥(75a)
(2)
where T, {s(i—l)*M+j> A(i—1)*M+j }JNL;[)
corresponding to the subgoal g;, y(1,) =
exp ( ZZ:Ol r(s,a,)) and y(t2,) is a Dirac delta
for the subgoal constraints.




MERHOD (3 PARTS)

Unfortunately, in the offline dataset, no subgoals correspond to each
trajectory in advance. This requires us to preprocess the dataset and
extract high-quality subgoal sequences. The critical challenge is that
suboptimal trajectories pollute the dataset. For example, in a goal-
reaching task, the two trajectories to the goal may differ significantly in
length. Thus extracting the corresponding subgoals from each trajectory
independently will not guarantee optimality.



PART 1: GOAL EXTRACTION

We borrow a planning-based online RL method, SoRB [3], which can
automatically find subgoals by learning graphic abstractions of the
environment. This graph is constructed via an extra RL task, where a goal-
conditioned value function provides edge weights, and nodes are taken to
be observations. Using graph search to find the shortest path, we can
automatically generate subgoals, even in high-dimensional environments.

S == =20

(a) Initialization. (b) Clustering. (c) Graph Construction. (d) Planning.




PART 1: GOAL EXTRACTION

For the original dataset D, we first cluster all trajectories using the mini-
batch k-means++ algorithm to aggregate trajectories with the same initial
and the terminal state into a sub-dataset Dc; next, we transform Dc based
on the distributional off-policy RL to a weighted directed graph Gc, where
the nodes represent the states and the weights represent the predicted
shortest distance;

Algorithm 1 Next Subgoal Searching on the Sub-graph.

Finallyy we use the proposed
Input: the current goal s, the terminate state st, dataset Vs RIOP

D., the learned goal-conditioned value function V. offline version of SoRB [3] to

My, <= =V (D¢, D); P cached search for the shortest path
Mp,,p, < FloydWarshall (M,,); > cached — :
M,, p, — —V(s4,De); Mp,—s, — —V(De,sr);  rom the initial to the terminal

My, 5y < My p, + Mp,_sp, + (Mp,_y5,) " state on Gc and obtain the

u,v < arg rnin’u,'ue’DC Ms ST
Output: the next subgoal ;g/ = U subgoal REEUCTIEE:




PART 2: DIFFUSION MODEL PARAMETERIZATION

Existing work has shown that the capture of correlations between
elements (e.g., image pixels or trajectory) is critical to the success of
diffusion models. Different from related works that use the diffusion
model to denoise the entire state trajectory or state-action trajectory, we
denoise the sparser subgoal trajectory in the goal diffusion. The long-
range dependence between subgoals makes the U-Net-like structure
based on local convolution no longer the optimal choice. This motivates us
to use the transformer [4] as the skeleton of the diffusion model.



PART 2: DIFFUSION MODEL PARAMETERIZATION
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PART 3: HIERARCHICAL DIFFUSION

After the model is trained, sampling from HDMI is equivalent to complete
the planning. Reward-maximizing decision-making with the hierarchical
diffusion is shown in following, and for the goal-reaching task, only a
simple modification is required, as shown in Algorithm 5 in the paper.

Algorithm 2 Reward-Maximizing Diffusion Model Training with Classifier-free Guidance.

Input: the offline dataset D, the probability of unconditional training p,, (fixed p,, = 1 for the trajectory diffuser).
repeat

(10,y(10)) ~D > Sample subgoal/state trajectory with conditioning from the dataset
y(70) « @ with probability p, > Randomly discard conditioning to train unconditionally
e~N(,I),k~U{],...,K}

T,k = /OkTg,0 + (1 — ag)e > Corrupt data to the sampled value
Take gradient step on Vy || — &||> where &y := € (%, y(7%), k) > Optimization of denoising model

until converged
Output: the parameter 6 of the diffusion model.




PART 3: HIERARCHICAL DIFFUSION

Algorithm 3 Reward-Maximizing Decision-Making with the Hierarchical Diffusion.

Input: goal diffuser €y, trajectory diffuser €q,, inverse dynamics model Fy,, classifier-free guidance scale w, starting
subgoal go < s, fixed conditioning information y(7,) < 1, initializing subgoal history h,.insert(go).

while not done do > Goal diffusion
initialize 7, ~ N(0, al) > Sample noise subgoal trajectory
fork=K,,...,1 do > Receding horizon control loop
Tg,k[: Length(hg)] < hgy > Constrain newly generated subgoals are consistent with already generated subgoals
€€, (Tgk, D, k) +w (€0, (Tgk,Y(T4), k) — €0, (Tg.k, D, k)) > Classifier-free guidance

(Bk—1,2k—1) « Denoise (Tyk,€)
Tok—1 ~N (pr—1,aZk_1)
end for
observe next subgoal g; hy.insert(g)
initialize state history hg, t < 0

while not done do > Trajectory diffusion
observe state s; hs.insert(s); initialize 75 ~ N (0, al) > Sample noise state trajectory
fork=Kgy,...,1 do > Receding horizon control loop
Tsk[: Length(hs)] « hs > Constrain newly generated states are consistent with already generated states

€ €o, (Ts .k, D, k) > Unconditional diffusion

(k—1,2k—1) < Denoise (Tsk, €)
Ts k-1 ~ N (e—1,0Xk—1)
Tsk—1]—1] g > Reformulating the conditional generation to the inpainting problem
end for
Extract (s¢, s¢+1) from 75
Execute a; = F' (s, St+1;05);t +— t+ 1
end while
end while
Output: the optimal action sequence {at}z:ol of the decision-making problem.




NUMERICAL RESULTS (PART)

Table 1: The performance in Maze2D, a typical long-horizon task with reward sparsity. Multi2D is a multi-task variant with
episodic, resampled goal locations. Results correspond to the mean and standard error over 5 planning seeds. The suffix
number of the environment name indicates that the test map is stitched together from multiple original maps.

Environment MPPI CQL IQL OPAL IRIS HiGoC  Diffuser DD HDMI
Maze2D U-Maze-3 14.4 36 232 - 63.8+2.5 61.2+3.3 82.6+1.6 83.9+3.1 103.6t1.7
Maze2D Medium-2 D0 23 19.8 - 59.5+4.7 59.8+4.1 87.8+3.1 85.8+3.3 102.1+2.5
Maze2D Large-2 39 1 311 - 38.2+1.2 454425 87.94+3.8 87.3+1.2 104.7+2.1

Single-task Average 8.0 6.8 247 - 53.8 555 86.1 85.7 103.5
Multi2D U-Maze-3 17.8 - 16.5 - 61.7£3.6 679+1.5 854+1.8 86.9+3.5 1054+2.4
Multi2D Medium-2 8.1 - 89 623128 41.4+19 524437 85.6+3.4 88.2+1.3 104.71+2.3
Multi2D  Large-2 4.5 - 10.3 554+43.7 28.1+3.8 42.1+3.3 89.3+5.8 91.7+2.8 105.8+1.9

Multi-task Average 10.1 - 11.9 - 43.7 54.1 86.8 88.9 105.3

Table 3: The performance in D4RL, a standardize reward-maximizing environment, in terms of normalized average returns.
Results for DD and HDMI correspond to the mean and standard error over 5 planning seeds.

Dataset Environment BC CQL IQL DT TT MoReL Diffuser DD Diffusion-QL HDMI
Med-Expert  HalfCheetah 552 916 86.7 86.8 95 53.3 79.8  90.6%1.3 96.8+0.3 92.1+14
Med-Expert Hopper 525 1054 91.5 107.6 110.0 108.7 107.2 111.8+1.8 111.1+1.3  113.5+0.9
Med-Expert Walker2d 107.5 108.8 109.6 108.1 101.9 95.6 1084 108.8+1.7 110.1+0.3 107.9+1.2
Medium HalfCheetah 426 440 474 426 469 42.1 442  49.1+1.0 51.1+0.5 48.0+0.9
Medium Hopper 529 585 663 676 61.1 95.4 58.5 79.34£3.6 90.5+4.6  76.4+2.6
Medium Walker2d 753 725 783 74.0 79 77.8 79.7  82.5+1.4 87.0+0.9  79.9+1.8
Med-Replay HalfCheetah 366 455 442 366 419 40.2 422  39.344.1 47.8+03  44.9+42.0
Med-Replay Hopper 18.1 95 947 827 915 93.6 96.8 100+0.7 101.3+0.6  99.6+1.5
Med-Replay Walker2d 260 772 739 66.6 82.6 49.8 61.2 75+4.3 95.5+1.5 80.7£2.1

Average 519 776 77 747 789 72.9 753 81.8 88.0 82.6




NUMERICAL RESULTS (PART)

. Table 4: The performance of HDMI and baselines in FinRL,
o , a realistic long-horizon reward-maximizing environment.
Results are measured same as (Qin et al., 2022).

HDMI

Dataset Det. BC CQL MB-PPO DD HDMI

FinRL-L-99 150 136 487 328 372 415

FinRL-L-999 150 137 416 656 721 733

FinRL-M-99 300 355 700 1213 830 1007

° FinRL-M-999 300 504 621 698 712 754

e ‘ FinRL-H-99 441 252 671 484 609 658
FinRL-H-999 441 270 444 787 782 801
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. Figure 5: Visualization of partial subgoals and states sam-
o o o o o o pled by HDMI in D4RL. Small circles indicate states, while
large circles indicate subgoals. For the sake of clear presen-
tation, we downsample the sequence and only visualized the
state sequence sampled in the Hopper environment. The

Figure 6: Subgoal sampled by baselines in Large—2 action sequences are not directly shown.
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