
A Robust Optimisation Perspective on
Counterexample-Guided Repair of Neural Networks

David Boetius Stefan Leue Tobias Sutter

1/10

Hi everyone, I’m David Boetius and I welcome you to my presentation on the paper
“A Robust Optimisation Perspective on Counterexample-Guided Repair of Neural
Networks” that I wrote together with Stefan Leue and Tobias Sutter.



Safety-Critical Neural Network Applications

Autonomous Driving

(Bojarski et al. 2016)

Aircraft Control

(Julian et al. 2019)

Medical Applications

(Amato et al. 2013)

2/10

Today, we see more and more approaches that suggest using neural networks in
safety critical domains, such as autonomous driving or medical applications. But,
for deploying neural networks in these applications, we require safety guarantees
on the networks involved. One approach for obtaining strong safety guarantees is
to use formal methods.



Formal Methods for Safe Deep Learning

Specifications

– formal description of
safety constraints

φ = (Xφ,Yφ)

netθ ⊨ φ

⇔ ∀x ∈ Xφ : netθ(x) ∈ Yφ

Verification

– given a neural
network netθ and a
property φ, either . . .

1. Prove netθ ⊨ φ, or
2. Provide a

counterexample

Repair

– Make network satisfy
specification

– Modify network
parameters

– Maintain correct
functionality

3/10

Formal methods, typically build upon a specification which is a formal description
of safe behaviour.
In our setting, a specification consists of a set of properties, which each consists of
an input set X phi and an output set Y phi. Typically the input set is a hyperrectangle
in the high-dimensional input space while the output set captures, for example, that
some output output is the largest output.
If we have a neural network, we want that it satisfies each of the properties in a
specification. That means that for all of the inputs in the property input set, the
network produces an output in the property output set.



Formal Methods for Safe Deep Learning

Specifications

– formal description of
safety constraints

φ = (Xφ,Yφ)

netθ ⊨ φ

⇔ ∀x ∈ Xφ : netθ(x) ∈ Yφ

Verification

– given a neural
network netθ and a
property φ, either . . .

1. Prove netθ ⊨ φ, or
2. Provide a

counterexample

Repair

– Make network satisfy
specification

– Modify network
parameters

– Maintain correct
functionality

3/10

Formal methods, typically build upon a specification which is a formal description
of safe behaviour.
In our setting, a specification consists of a set of properties, which each consists of
an input set X phi and an output set Y phi. Typically the input set is a hyperrectangle
in the high-dimensional input space while the output set captures, for example, that
some output output is the largest output.
If we have a neural network, we want that it satisfies each of the properties in a
specification. That means that for all of the inputs in the property input set, the
network produces an output in the property output set.



Formal Methods for Safe Deep Learning

Specifications

– formal description of
safety constraints

φ = (Xφ,Yφ)

netθ ⊨ φ

⇔ ∀x ∈ Xφ : netθ(x) ∈ Yφ

Verification

– given a neural
network netθ and a
property φ, either . . .

1. Prove netθ ⊨ φ, or
2. Provide a

counterexample

Repair

– Make network satisfy
specification

– Modify network
parameters

– Maintain correct
functionality

3/10

Formal methods, typically build upon a specification which is a formal description
of safe behaviour.
In our setting, a specification consists of a set of properties, which each consists of
an input set X phi and an output set Y phi. Typically the input set is a hyperrectangle
in the high-dimensional input space while the output set captures, for example, that
some output output is the largest output.
If we have a neural network, we want that it satisfies each of the properties in a
specification. That means that for all of the inputs in the property input set, the
network produces an output in the property output set.



Formal Methods for Safe Deep Learning

Specifications

– formal description of
safety constraints

φ = (Xφ,Yφ)

netθ ⊨ φ

⇔ ∀x ∈ Xφ : netθ(x) ∈ Yφ

Verification

– given a neural
network netθ and a
property φ, either . . .

1. Prove netθ ⊨ φ, or
2. Provide a

counterexample

Repair

– Make network satisfy
specification

– Modify network
parameters

– Maintain correct
functionality

3/10

If we have such a formal specification, we can use a verifier to either prove that the
network satisfies the specification or to derive a counterexample, which is an input
that shows that the network does not satisfy the specification.
And if the network does not satisfy the specification, we can use repair to modify
the network parameters to make the network satisfy the specification. An important
secondary goal here is to maintain correct functionality which could, for example,
mean maintaining accuracy on some data set.
In our paper, we look at a specific algorithm for neural network repair. . .



Formal Methods for Safe Deep Learning

Specifications

– formal description of
safety constraints

φ = (Xφ,Yφ)

netθ ⊨ φ

⇔ ∀x ∈ Xφ : netθ(x) ∈ Yφ

Verification

– given a neural
network netθ and a
property φ, either . . .

1. Prove netθ ⊨ φ, or
2. Provide a

counterexample

Repair

– Make network satisfy
specification

– Modify network
parameters

– Maintain correct
functionality

3/10

If we have such a formal specification, we can use a verifier to either prove that the
network satisfies the specification or to derive a counterexample, which is an input
that shows that the network does not satisfy the specification.
And if the network does not satisfy the specification, we can use repair to modify
the network parameters to make the network satisfy the specification. An important
secondary goal here is to maintain correct functionality which could, for example,
mean maintaining accuracy on some data set.
In our paper, we look at a specific algorithm for neural network repair. . .



Counterexample-Guided Repair

1 while network is unsafe do
2 find counterexamples
3 remove counterexamples

Practice: ✓ (Pulina and Tacchella 2010; Goodfellow et al. 2015; Guidotti et al. 2019;
Dong et al. 2021; Goldberger et al. 2020; Sivaraman et al. 2020; Tan et al.
2021; Bauer-Marquart et al. 2022)

Theory:

4/10

. . . that’s called counterexample-guided repair. The basic idea of counterexample-
guided repair is to iterate finding counterexamples and removing counterexamples.
Actually, this approach is very popular and also empirically successful, but on the-
oretical side of things, we know very little about this approach.
In particular, we don’t know whether it is guaranteed to terminate which is what we
are mainly studying in our paper.



Counterexample-Guided Repair

1 while network is unsafe do
2 find counterexamples
3 remove counterexamples

Practice: ✓ (Pulina and Tacchella 2010; Goodfellow et al. 2015; Guidotti et al. 2019;
Dong et al. 2021; Goldberger et al. 2020; Sivaraman et al. 2020; Tan et al.
2021; Bauer-Marquart et al. 2022)

Theory: ???

4/10

. . . that’s called counterexample-guided repair. The basic idea of counterexample-
guided repair is to iterate finding counterexamples and removing counterexamples.
Actually, this approach is very popular and also empirically successful, but on the-
oretical side of things, we know very little about this approach.
In particular, we don’t know whether it is guaranteed to terminate which is what we
are mainly studying in our paper.



Counterexample-Guided Repair

1 while network is unsafe do
2 find counterexamples
3 remove counterexamples

Practice: ✓ (Pulina and Tacchella 2010; Goodfellow et al. 2015; Guidotti et al. 2019;
Dong et al. 2021; Goldberger et al. 2020; Sivaraman et al. 2020; Tan et al.
2021; Bauer-Marquart et al. 2022)

Theory: Termination?

4/10

. . . that’s called counterexample-guided repair. The basic idea of counterexample-
guided repair is to iterate finding counterexamples and removing counterexamples.
Actually, this approach is very popular and also empirically successful, but on the-
oretical side of things, we know very little about this approach.
In particular, we don’t know whether it is guaranteed to terminate which is what we
are mainly studying in our paper.



1 while network is unsafe do
2 find counterexamples
3 remove counterexamples

5/10

So, to gain a theoretical understanding of counterexample-guided repair,
one helpful insight is that you can describe both finding counterexamples and re-
moving counterexamples as solving optimisation problems.
However, when looking closer, we can realise that the whole algorithm is trying to
solve an optimisation problem, but one with infinitely many constraints — a robust
optimisation problem.
And actually removing counterexamples corresponds to what is called a scenario
problem of this robust optimisation problem and counterexample-guided repair it-
self corresponds to solving a sequence of scenario problems, which is also a popular
approach for solving robust optimisation problems.
Using this link between robust optimisation and counterexample-guided repair. . .



1 while network is unsafe do
2 find counterexamples
3 remove counterexamples

V :

{
minimise

x
fSat(netθ(x))

subject to x ∈ Xφ

CR :


minimise

θ∈Rp
J(θ)

subject to fSat
(
netθ

(
x(i)

))
≥ 0

∀i ∈ {1, . . . , N}
5/10

So, to gain a theoretical understanding of counterexample-guided repair,
one helpful insight is that you can describe both finding counterexamples and re-
moving counterexamples as solving optimisation problems.
However, when looking closer, we can realise that the whole algorithm is trying to
solve an optimisation problem, but one with infinitely many constraints — a robust
optimisation problem.
And actually removing counterexamples corresponds to what is called a scenario
problem of this robust optimisation problem and counterexample-guided repair it-
self corresponds to solving a sequence of scenario problems, which is also a popular
approach for solving robust optimisation problems.
Using this link between robust optimisation and counterexample-guided repair. . .



1 while network is unsafe do
2 find counterexamples
3 remove counterexamples

V :

{
minimise

x
fSat(netθ(x))

subject to x ∈ Xφ

CR :


minimise

θ∈Rp
J(θ)

subject to fSat
(
netθ

(
x(i)

))
≥ 0

∀i ∈ {1, . . . , N}

R :

{
minimise

θ∈Rp
J(θ)

subject to fSat(netθ(x)) ≥ 0 ∀x ∈ Xφ.

5/10

So, to gain a theoretical understanding of counterexample-guided repair,
one helpful insight is that you can describe both finding counterexamples and re-
moving counterexamples as solving optimisation problems.
However, when looking closer, we can realise that the whole algorithm is trying to
solve an optimisation problem, but one with infinitely many constraints — a robust
optimisation problem.
And actually removing counterexamples corresponds to what is called a scenario
problem of this robust optimisation problem and counterexample-guided repair it-
self corresponds to solving a sequence of scenario problems, which is also a popular
approach for solving robust optimisation problems.
Using this link between robust optimisation and counterexample-guided repair. . .



1 while network is unsafe do
2 find counterexamples
3 remove counterexamples

V :

{
minimise

x
fSat(netθ(x))

subject to x ∈ Xφ

CR :


minimise

θ∈Rp
J(θ)

subject to fSat
(
netθ

(
x(i)

))
≥ 0

∀i ∈ {1, . . . , N}

R :

{
minimise

θ∈Rp
J(θ)

subject to fSat(netθ(x)) ≥ 0 ∀x ∈ Xφ.

5/10

So, to gain a theoretical understanding of counterexample-guided repair,
one helpful insight is that you can describe both finding counterexamples and re-
moving counterexamples as solving optimisation problems.
However, when looking closer, we can realise that the whole algorithm is trying to
solve an optimisation problem, but one with infinitely many constraints — a robust
optimisation problem.
And actually removing counterexamples corresponds to what is called a scenario
problem of this robust optimisation problem and counterexample-guided repair it-
self corresponds to solving a sequence of scenario problems, which is also a popular
approach for solving robust optimisation problems.
Using this link between robust optimisation and counterexample-guided repair. . .



Termination Results

Model Specification

Linear Regression Model Linear ✓

Linear Classifier, ReLU Neuron Linear ✓

Neural Network Bounded Input Set ?

Neural Network Unbounded Input Set ×

6/10

. . . we were able to derive several termination results for counterexample-guided re-
pair. First of all, we were able to show that counterexample-guided repair is actually
guaranteed to terminate when repairing linear regression models, linear classifiers
and also single ReLU neurons under mild assumptions on the specification. On
the other hand, we were also able to show that counterexample-guided repair is not
guaranteed to terminate when repairing neural networks to conform to properties
with unbounded input sets. Now, in practice, specifications actually have bounded
input sets, so our theoretical results do not yet address the main application, but still
they provide insights into the termination of counterexample-guided repair for the
first time.
These results assume a verifier that always computes most-violating counterexam-
ples, but most available verifiers instead compute arbitrary counterexamples. We
also had a look at using these, how we call them, “early-exit” verifiers and found
that actually counterexample-guided repair is not guaranteed to terminate when us-
ing such verifiers regardless of the model class.



Termination Results

Model Specification

Linear Regression Model Linear ✓

Linear Classifier, ReLU Neuron Linear ✓

Neural Network Bounded Input Set ?

Neural Network Unbounded Input Set ×
When using an Early-Exit Verifier ×

6/10

. . . we were able to derive several termination results for counterexample-guided re-
pair. First of all, we were able to show that counterexample-guided repair is actually
guaranteed to terminate when repairing linear regression models, linear classifiers
and also single ReLU neurons under mild assumptions on the specification. On
the other hand, we were also able to show that counterexample-guided repair is not
guaranteed to terminate when repairing neural networks to conform to properties
with unbounded input sets. Now, in practice, specifications actually have bounded
input sets, so our theoretical results do not yet address the main application, but still
they provide insights into the termination of counterexample-guided repair for the
first time.
These results assume a verifier that always computes most-violating counterexam-
ples, but most available verifiers instead compute arbitrary counterexamples. We
also had a look at using these, how we call them, “early-exit” verifiers and found
that actually counterexample-guided repair is not guaranteed to terminate when us-
ing such verifiers regardless of the model class.



Optimal vs. Early-Exit Verifier

CD RMI MNIST ACAS Xu

9% 0% 6% 0%
10%

0%

86%
97%

74%
92%

8% 3%

(a) Which is faster in terms of runtime?

CD RMI MNIST ACAS Xu

56%

0%

56%
79%

28%

0%
20% 18%9%

92%

24%
3%

(b) Which is faster in terms of repair steps?

optimal verifier, early-exit verifier, same speed

7/10

This motivated us to evaluate the use of early-exit verifiers empirically and we
found that using an early-exit verifier in practice provides speed advantages com-
pared to computing most-violating counterexamples while we did not observe non-
termination in our experiments.



Using Falsifiers for Repair

0 10 20 30 40 50
102

103

104

Optimal

Early-Exit

BIM

#Repaired Instances

R
un

tim
e

(s
)

8/10

We also studied another approach for speeding up repair that uses falsifiers which
are techniques that try to generate counterexamples faster while not being able to
prove property satisfaction. We found that certain falsifiers can also significantly
accelerate repair.



Repairing Linear Regression Models

Success Rate
Algorithm ε = 100 ε = 150

Ouroboros 30% 77%
SpecRepair 58% 94%
Quadratic Programming 72% 97%

9/10

Lastly, our insights into repairing linear regression models allow us to derive a new
repair algorithm that is based on quadratic programming and this new algorithm
surpasses existing algorithms for repairing linear regression models.



Conclusion

1 while network is unsafe do
2 find counterexamples
3 remove counterexamples

10/10

To summarise, we study counterexample-guided repair and
established a link between counterexample-guided repair and robust optimisation.
This allows us to gain insights into the termination of counterexample guided repair
for repairing neural networks for the first time.
We complement our theoretical results with experiments on accelerating repair and
on a new algorithm for repairing linear regression models that is enabled by our
theoretical results that surpasses existing repair algorithms for these models.
This concludes my presentation, thank you for watching.



Conclusion

1 while network is unsafe do
2 find counterexamples
3 remove counterexamples

V :

{
minimise

x
fSat(netθ(x))

subject to x ∈ Xφ

CR :


minimise

θ∈Rp
J(θ)

subject to fSat
(
netθ

(
x(i)

))
≥ 0

∀i ∈ {1, . . . , N}

R :

{
minimise

θ∈Rp
J(θ)

subject to fSat(netθ(x)) ≥ 0 ∀x ∈ Xφ. Model Specification

Linear Regression Model Linear ✓

Linear Classifier, ReLU Neuron Linear ✓

Neural Network Bounded Input Set ?

Neural Network Unbounded Input Set ×
When using an Early-Exit Verifier ×

10/10

To summarise, we study counterexample-guided repair and
established a link between counterexample-guided repair and robust optimisation.
This allows us to gain insights into the termination of counterexample guided repair
for repairing neural networks for the first time.
We complement our theoretical results with experiments on accelerating repair and
on a new algorithm for repairing linear regression models that is enabled by our
theoretical results that surpasses existing repair algorithms for these models.
This concludes my presentation, thank you for watching.



Conclusion

1 while network is unsafe do
2 find counterexamples
3 remove counterexamples

V :

{
minimise

x
fSat(netθ(x))

subject to x ∈ Xφ

CR :


minimise

θ∈Rp
J(θ)

subject to fSat
(
netθ

(
x(i)

))
≥ 0

∀i ∈ {1, . . . , N}

R :

{
minimise

θ∈Rp
J(θ)

subject to fSat(netθ(x)) ≥ 0 ∀x ∈ Xφ. Model Specification

Linear Regression Model Linear ✓

Linear Classifier, ReLU Neuron Linear ✓

Neural Network Bounded Input Set ?

Neural Network Unbounded Input Set ×
When using an Early-Exit Verifier ×

CD RMI MNIST ACAS Xu

9% 0% 6% 0%
10%

0%

86%
97%

74%
92%

8% 3%

Which is faster in terms of runtime?

CD RMI MNIST ACAS Xu

56%

0%

56%
79%

28%

0%
20% 18%9%

92%

24%
3%

Which is faster in terms of repair steps?

optimal verifier, early-exit verifier, same speed

0 10 20 30 40 50
102

103

104

Optimal

Early-Exit

BIM

#Repaired Instances

R
un

tim
e

(s
)

Success Rate
Algorithm ε = 100 ε = 150

Ouroboros 30% 77%
SpecRepair 58% 94%
Quadratic Programming 72% 97%

10/10

To summarise, we study counterexample-guided repair and
established a link between counterexample-guided repair and robust optimisation.
This allows us to gain insights into the termination of counterexample guided repair
for repairing neural networks for the first time.
We complement our theoretical results with experiments on accelerating repair and
on a new algorithm for repairing linear regression models that is enabled by our
theoretical results that surpasses existing repair algorithms for these models.
This concludes my presentation, thank you for watching.



References

Amato, Filippo, Alberto López, Eladia M. Peña-Méndez, Petr Vaňhara,
Aleš Hampl, and Josef Havel (2013). “Artificial neural networks in medical
diagnosis”. In: J. Appl. Biomed. 11.2, pp. 47–58. URL:
https://doi.org/10.2478/v10136-012-0031-x.
Bauer-Marquart, Fabian, David Boetius, Stefan Leue, and Christian Schilling
(2022). “SpecRepair: Counter-Example Guided Safety Repair of Deep Neural
Networks”. In: SPIN. Vol. 13255. Lecture Notes in Computer Science,
pp. 79–96. URL:
https://doi.org/10.1007/978-3-031-15077-7_5.

Appendix 1/4

https://doi.org/10.2478/v10136-012-0031-x
https://doi.org/10.1007/978-3-031-15077-7_5


References (cont.)

Bojarski, Mariusz, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,
Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller,
Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba (2016). “End to End
Learning for Self-Driving Cars”. In: CoRR abs/1604.07316. URL:
http://arxiv.org/abs/1604.07316.
Dong, Guoliang, Jun Sun, Jingyi Wang, Xinyu Wang, and Ting Dai (2021).
“Towards Repairing Neural Networks Correctly”. In: QRS, pp. 714–725. URL:
https://doi.org/10.1109/QRS54544.2021.00081.
Goldberger, Ben, Guy Katz, Yossi Adi, and Joseph Keshet (2020). “Minimal
Modifications of Deep Neural Networks using Verification”. In: LPAR. Vol. 73.
EPiC Series in Computing, pp. 260–278. URL:
https://easychair.org/publications/paper/CWhF.

Appendix 2/4

http://arxiv.org/abs/1604.07316
https://doi.org/10.1109/QRS54544.2021.00081
https://easychair.org/publications/paper/CWhF


References (cont.)

Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy (2015).
“Explaining and Harnessing Adversarial Examples”. In: ICLR (Poster). URL:
http://arxiv.org/abs/1412.6572.
Guidotti, Dario, Francesco Leofante, Armando Tacchella, and
Claudio Castellini (2019). “Improving reliability of myocontrol using formal
verification”. In: IEEE Trans. Neural Syst. Rehabilitation Eng. 27.4,
pp. 564–571. URL:
https://doi.org/10.1109/TNSRE.2019.2893152.
Julian, Kyle D., Shivam Sharma, Jean-Baptiste Jeannin, and
Mykel J. Kochenderfer (2019). “Verifying Aircraft Collision Avoidance
Neural Networks Through Linear Approximations of Safe Regions”. In: CoRR
abs/1903.00762. URL: http://arxiv.org/abs/1903.00762.

Appendix 3/4

http://arxiv.org/abs/1412.6572
https://doi.org/10.1109/TNSRE.2019.2893152
http://arxiv.org/abs/1903.00762


References (cont.)

Pulina, Luca and Armando Tacchella (2010). “An Abstraction-Refinement
Approach to Verification of Artificial Neural Networks”. In: CAV. Vol. 6174.
Lecture Notes in Computer Science, pp. 243–257. URL:
https://doi.org/10.1007/978-3-642-14295-6_24.
Sivaraman, Aishwarya, Golnoosh Farnadi, Todd D. Millstein, and
Guy Van den Broeck (2020). “Counterexample-Guided Learning of Monotonic
Neural Networks”. In: NeurIPS. URL:
https://proceedings.neurips.cc/paper/2020/hash/
8ab70731b1553f17c11a3bbc87e0b605-Abstract.html.
Tan, Cheng, Yibo Zhu, and Chuanxiong Guo (2021). “Building verified neural
networks with specifications for systems”. In: APSys, pp. 42–47. URL:
https://doi.org/10.1145/3476886.3477508.

Appendix 4/4

https://doi.org/10.1007/978-3-642-14295-6_24
https://proceedings.neurips.cc/paper/2020/hash/8ab70731b1553f17c11a3bbc87e0b605-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/8ab70731b1553f17c11a3bbc87e0b605-Abstract.html
https://doi.org/10.1145/3476886.3477508

	Appendix

