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. . . Deep Anomaly Detection with Scale Learning
0 Deep anomaly detection methods yield drastic

performance improvement over traditional methods
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Motivation: Challenges a ICML

Due to the unsupervised nature of anomaly detection,
designing deep anomaly detection models is
a journey of finding reasonable supervisory signals .

G J

Current Deep Anomaly Detectors

@ Reconstruction-based Generative methods o Over-emphasizing low-level details (reducing errors in
Employ various kinds of autoencoders, generative each fine-grained point)

adversarial networks, or prediction models

& One-class-based Methods

Construct a model (hypersphere or hyperplane) that can
describe the data “normality”

O One-class assumption might be vulnerable when there
are more than one prototype in normal data

@ Self-supervised Contrastive Methods

O More superior performance, but most transformation

Define transformation operation to obtain augmented . . . .
operations are not applicable in non-image data

samples and perform proxy tasks
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Deep Anomaly Detection with Scale Learning

a ICML

As for non-perceptual tabular data, it is still a non-trivial task to define
suitable supervisory signals to actuate deep learning models.
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[0 Definition of “Scale” in real-life Deep Anomaly Detection with Scale Learning

» Scale indicates the ratio between the real size of something and
its size on a map, model, or diagram.

O Definition of “Scale” in Tabular data (multi-dimensional vectors)
————————————— — Scale is defined as the mathematical

relationship between the
""""" G 3) h . . o
3 h LLLIGBR) dimensionality of sub-vectors and

f 2 ﬁ -------- LL_1G(2,h) |that of the representations
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Data @4 5 --------- LLLLIG(4,h) |transformed data, sfu.pply/ng
Instance : : labeled data for driving neural
: ' networks on tabular data
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ﬁ

Sub-vectors of tabular data instances are first transformed
to representations via random linear projection
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Our Method SLAD: Scale Learning for Anomaly Detection

[ Scale Learning-based deep Anomaly Detection method (SLAD)

Training Data

learning is a group of

their scales (label).

Each training sample in scale

representations (data) and
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Deep Anomaly Detection with Scale Learning

‘ Neural Network @ ‘ (

Alignment-based Loss L

Distribution
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Scale Learning

Training:
Predictions and scale labels are
converted to two distributions;

Scale learning is defined as a
distribution alignment task.
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Transform sub-vectors of a data
instance to representations

T T

Sub-vectors
p
{X(s,-)}i: N

Compute scale
as labels

Anomaly detection:

Through this proxy task, our
approach models inherent
regularities and patterns, which
well describes data “normality”.
Errors computed through the loss
function can indicate abnormal
degrees of incoming data.

‘ Sampling

Data Instance x 1 E i
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v’ Capability to Handie ‘Comiplicatéd NSrmaf Datd "’

O Empirical Results
>

SLAD Significantly outperforms self-supervised/reconstruction-
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0 The source code is available at https://github.com/xuhongzuo/scale-learning

O Our method is also included in the DeepOD package. https://github.com/xuhongzuo/deepod

Python Deep Outlier/Anomaly Detection (DeepOD)

(') python Package using Conda (') Python Package using pip [passing § coverage 809 Downloads |2k
Supported Models . . .
Usages PP -i"’ We are working on a new feature -- by simply setting a few
Detection models: parameters, different deep anomaly detection models can not only handle
DeepOD can be used in a few lines of code. This API style is the same Model  Venue = Year Type Title different data types.
with sklearn and PyOD. Deep ICML 2018 | unsupervised Deep One-Class Classification
SVDD . . . .
e We have finished some attempts on partial models like Deep SVDD,
REPEN KDD 2018  unsupervised Learning Representations of Ultrahigh-dimensional Data for
# unsupervised methods Random Distance-based Outlier Detection DevNet, Deep SAD, PReNet and DIF. These models can use temporal
from deepod.models.dsvdd import DeepSVDD RDP UCAI 2020  unsupervised Unsupervised Representation Learning by Predicting networks like LSTM, GRU, TCN, Conv, Transformer to handle time
clf = DeepSVDD() Random Distances Series data
c1f.fit(X_train, y=None) RCA 1ICAI 2021  unsupervised RCA: A Deep Collaborative Autoencoder Approach for :

Anomaly Detection

scores = clf.decision_function(X_test) e future work: we also want to implement several network structure, so

GOAD ICLR 2020  unsupervised Classification-Based Anomaly Detection for General Data . . . .
as to processing more data types like graphs and images by simply
# weakly-supervised methods NeuTral ICML 2021  unsupervised Neural Transformation Learning for Deep Anomaly . . . K
; Detection Beyond Images plugging in corresponding network architecture.
from deepod.models.devnet import DevNet
c1f DevNet ( ) ICcL ICLR 2022 unsupervised Anomaly Detection for Tabular Data with Internal

Contrastive Learning
clf.fit(X_train, y=semi_y) # semi_y uses 1 for known anomalies,

- 7 =77 - DIF TKDE 2023  unsupervised Deep Isolation Forest for Anomaly Detection
scores = clf.decision_function(X_test)
SLAD ICML | 2023 unsupervised Fascinating Supervisory Signals and Where to Find Them:

. Deep Anomaly Detection with Scale Learning

DevNet KDD 2019 weakly- Deep Anomaly Detection with Deviation Networks
supervised
PReNet KDD 2023 weakly- Deep Weakly-supervised Anomaly Detection

Different network structures
(MLP, Transformer, GRU, LSTM,
Convy, ...) to handle both
tabular and time series data

Easy, consistent, and clear API 13 SOTA
to use different anomaly Anomaly detection
detection models models
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