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Backgrounds

e Multi-agent reinforcement learning (MARL) has demonstrated many empirical
successes, e.g. strategic games (Go, StarCraft 1I...)

* Policy optimization methods are widely used in MARL (AlphaGo, LOLA...)
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Main challenges in MARL (Zhang 2021)

1. non-stationarity: each action taken by one agent affects the total
reward and the transition of state.

2. scalability: taking other agents into consideration, each individual
agent would face the joint action space, whose dimension increases
exponentially with the number of agents

3. function approximation: closely related to the scalability i1ssue, the
state space and joint action space are often immense in MARL



Motivation

Despite the empirical successes, theoretical studies of policy optimization in MARL
are very limited. Even for the cooperative setting where the agents share a common
goal: maximizing the total reward function

In this paper, we aim to answer the following fundamental question:

Can we design a provably convergent multi-agent policy optimization algorithm in
the cooperative setting with function approximation?




Contributions

1.We answer the above question affirmatively.

2.We propose a multi-agent PPO algorithm 1in which the local policy of each
agent is updated sequentially in a similar fashion as vanilla PPO algorithm
(Schulman et al., 2017).

3.We adopt the log-linear function approximation for the policies. We prove
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that multi-agent PPO converges at a sublinear O (— J ogdl D) rate up to
some statistical errors incurred in evaluating/improving policies.
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4 Moreover, we propose an off-policy variant of the multi-agent PPO
algorithm and introduce pessimism into policy evaluation.



Problem Setup

* Fully-cooperative Markov Games

> atuple M = (N, S, A, P,r,y): Aparty of participants N, a set of states S, a set of actions A, a
transition probability P: S X A X A — A(S), areward functionr:§ X A X A = [0,1], a
discounted factor y € [0, 1).

» define policies as probability distributions over action space: T € § — A(A).

e Value function
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Multi-agent Notations

* We write index k on superscript when we refer to the specific k-th agent. When
bold symbols are used without any superscript (e.g., @), they consider all agents.
For simplicity, let (m: m") be shorthand for set: {ijm <i <m',i € N}.

* Definition 3.1. Let P be a subset in N . The multi-agent action value function
associated with agents in P is

7(s,a”) = Ea-z[Qx(s, a”, @)]
here we use a tilde over symbols to refer to the complement agents, namely @ =
{a'|i ¢ P,i € N}.



Multi-agent PPO for online setting

Parametrization For the m-th agent (m € N), its conditional policy depends on all
prior ordered agents a1, Given a coefficient vector 8 € ©, where © = {||0|| < R|f €
R?} is a convex, norm-constrained set. The probability of choosing action a™ under state
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Multi-agent PPO for online setting

Policy Evaluation In this step, we aim to examine the quality of the attained policy.
Thereby, a (Q-function estimator is required. We make the following assumption.

Assumption 4.3. Assume we can access an estimator of () function that returns Q. The
returned () satisfies the following condition for all m € N at the k-th iteration
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Algorithm 1 Multi-Agent PPO

Input: Markov game (N, S, A, P,r,~v), penalty parameter (3, stepsize 7 for sub-problem,
A I O r. i 1- h m number of SGD iterations 7', number of iterations K.
9 Output: Uniformly sample £ from 0,1,--- K — 1, return 7 = my, .
1: Initialize 6* = 0 for every m € N.

2: for k=0,1,...,K —1do
3:  Set parameter B +— BVK

4: form=1,---,N do

5 Sample {st,  Lim— L {”}g:ol from o = vy, .
6: Obtain Q ( I:m—l a™) for each sample .
7 Feed samples into A]gorlthm 3, obtain 6" ;.
8: end for

9: end for

Algorithm 3 Policy Improvement Solver for MA-PPO

Input: MG (N, S, A, P,r,7), iterations T, stepsize 77, samples {s;,a, ™"
Output: Policy update 6.

laa’t}

1: Initialize 6y = 0.

2: fort=0,1,...,7—1do

3. Let (5,271 a) < (s, a, ™1 a™).

£ 0(t+E) — 0(t)—2n6(s,a" ™) ((0(8) — )T p(s, 2l ™) — BIQEM (s, am) )
5. O(t+ 1)+ Meb(t + 3)

6: end for

7. Calculate average: 6 <+ = S 6,




Theoretical results

* Theorem 1 (1informal): For this setting, after K 1terations, we have
J(*) — J (i) upper bounded by

’ (B\/N Nlog| A + Y0 S (A + 61?))
1—~ K

where A" = \/2(¢1 + ¢ 1) - (EZ” + %) and 6™ = 2¢7" ™. Here € is the statistical
error of a PPO iteration: for agent m € N,
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Pessimistic MA-PPO with Linear Function
Approximation

* We perform pessimistic policy evaluation via regularization to reduce
such overestimation aligning with experimental works.

* Theorem 1 (1informal): For this setting, after K 1terations, we have
J(*) — J (i) upper bounded by
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Thank you and some more information
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