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Problem: seeded graph matching

‘ Pre-matched nodes (seeds)

‘ Unmatched nodes

Goal: find the mapping between unmatched nodes using seeds

Applications: computer vision, social network de-anonymization,
computational biology, and natural language processing ...



Application: matching 3D scans of object surface
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With a small fraction of seeds,
* Our new SeedGNN can match nearly all nodes
* The existing SSL (semi-supervised learning) GNN almost

completely fails



Graph Neural Networks (GNNs)

d-dimension
embedding space



GNNs for seec

ed graph matching

Semi-supervised learning (SSL) Our Method: SeedGNN
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Key Idea 1: pair-wise GNN instead of node-based GNN

 Node-based GNNs fail to use seed information to distinguish nodes

‘ Seeds
‘ Unmatched nodes
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Key Idea 1: pair-wise GNN instead of node-based GNN

* Node-based GNNs fail to use seed information to distinguish nodes

 SeedGNN applied on node-pairs across graphs can easily utilize the seeds
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Key Idea 2: masking to enable successful percolation

e Percolation (i.e., using newly matched pairs as new seeds) is crucial for
seeded graph matching

 However, the new seeds found may be noisy (fake pairs)
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e Use the Hungarian algorithm to filter out the noisy information




Architecture

The [-layer of SeedGNN
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Convolution module aggregates neighboring information near the node pair

Percolation module filters out noisy information

Combining these two modules allows adaptive feature choosing



