Offline Meta Reinforcement Learning with In-Distribution Online Adaptation

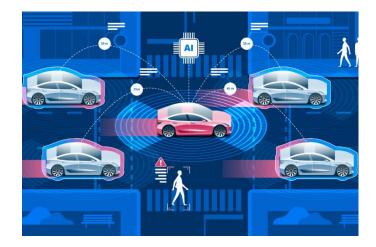
Jianhao Wang*, Jin Zhang*, Haozhe Jiang, Junyu Zhang, Liwei Wang, Chongjie Zhang Tsinghua University; Huazhong University of Science and Technology; Peking University *equal contribution

(ICML 2023)

Machine Intelligence Group

RL Real World Application

- Two challenges
 - Multi-task efficiency
 - Costly online interactions



Offline Meta RL with Fast Online Adaptation!

2

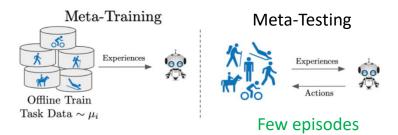
- Multi-task data collection
 - Task-dependent behavior policies

Offline Meta-RL with Fast Online Adaptation

Limitation

- They always require additional information for online adaptation
 - Offline contexts in FOCAL, MACAW
 - Oracle reward function in offline meta-training of BOREL
 - Unsupervised online samples (without rewards) are available in offline meta-training of SMAC

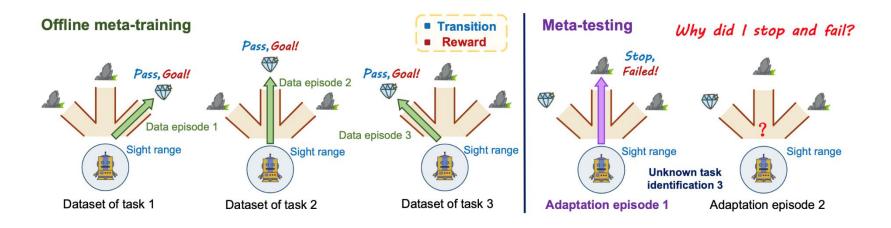
- Multi-task data collection
 - Task-dependent behavior policies
 - FOCAL, MACAW, BOREL, …
- Open problem
 - How to achieve effective online fast adaptation without extra information?
 Offline Meta-RL with Fast Online Adaptation



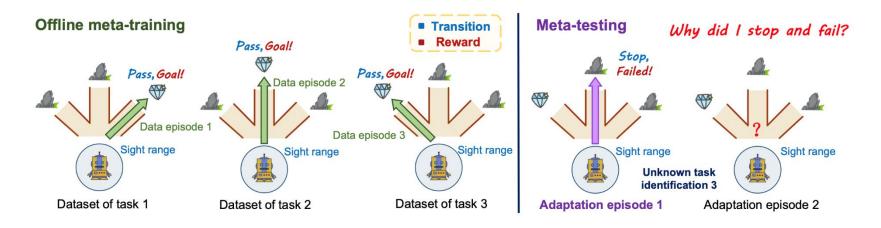
- Multi-task data collection
 - Task-dependent behavior policies
 - FOCAL, MACAW, BOREL, ...
- We first characterize a unique conundrum
 - Transition-reward distribution shift exists in the offline meta-RL with online adaptation

5

- What is the consequence of distribution shift?
 - Inconsistency between offline meta-policy evaluation and online adaptation evaluation

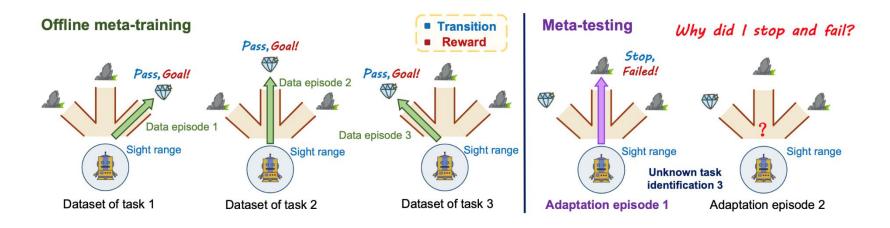


- Inconsistency dilemma: trust the offline dataset or trust new online experience?
 - Trust the offline dataset due to fast online adaptation!



7

- How to solve transition-reward distribution shift?
 - In-distribution episodes of offline datasets in online adaptation can ensure the performance guarantee!



Theory

Theoretical results

- Transition-reward distribution shift can lead to unreliable policy evaluation
- Filtering out out-of-distribution episodes in online adaptation can ensure the performance guarantee
- Meta-policies with Thompson sampling can generate indistribution episodes

IDAQ: In-Distribution Online Adaptation with Uncertainty Quantification

Require

- An uncertainty quantification ${\ensuremath{\mathbb Q}}$
- An offline meta-training algorithm A

Two stages

- Reference stage
- Iterative updating stage

Algorithm 1 IDAQ: In-Distribution online Adaptation with uncertainty Quantification

- 1: **Require:** An offline dataset \mathcal{D}^+ , a meta-testing task κ_{test} , the number of iterations n_i , a context-based offline meta-training algorithm \mathbb{A} (i.e., FOCAL), and an in-distribution uncertainty quantification \mathbb{Q}
- 2: Offline meta-train a context encoder q(z|c) and a meta-policy π(a|s, z) using an algorithm A in a dataset D⁺
 {Offline meta-training}
- 3: Perform reference stage of online adaptation and estimate the in-distribution threshold δ using Q {Start online meta-testing}
- 4: Derive the in-distribution context c_{in} with Eq. (2) and posterior task belief $q(z|c_{in})$
- 5: for $t = 1 \dots n_i$ do {*Iterative updating stage*}
- 6: Collect an online adaptation episode using the posterior task belief q and meta-policy π in κ_{test}
- 7: Update the in-distribution context c_{in} using \mathbb{Q}, δ and derive the posterior task belief $q(z|c_{in})$
- 8: end for
- 9: Return: π , $q(z|c_{in})$

IDAQ

Uncertainty quantification

- Prediction Error
 - Quantify the model error
 - Also called "curiosity"
- Prediction Variance
 - Quantify the model variance
 - Using a bootstrap ensemble
- Return-based

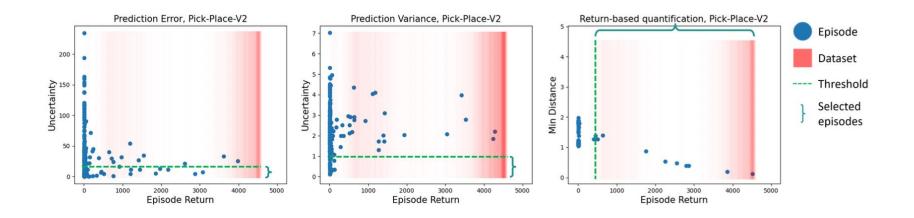
$$\mathbb{Q}_{PE}(\tau_i, z) = \frac{1}{HL} \sum_{t=0}^{H-1} \sum_{i=1}^{L} |r_t - r_{\phi_i}(s_t, a_t, z)| \qquad (3) + ||s_{t+1} - p_{\psi_i}(s_t, a_t, z)||_2,$$

$$\begin{aligned} \mathbb{Q}_{PV}(\tau_i, z) &= \frac{1}{H} \sum_{t=0}^{H-1} \max_{i,j} \left| r_{\phi_i}(s_t, a_t, z) - r_{\phi_j}(s_t, a_t, z) \right| \\ &+ \left\| p_{\psi_i}(s_t, a_t, z) - p_{\psi_j}(s_t, a_t, z) \right\|_2, \end{aligned}$$
(4)

$$\mathbb{Q}_{RE}\left(\{\tau_i\}_{i=1}^{n_e}\right) = -\frac{1}{n_e} \sum_{i=1}^{n_e} \sum_{t=0}^{H-1} r_t^i,$$
(5)

 Take an offline bias: offline meta-training can not well-optimize metapolicies on out-of-distribution states

Uncertainty quantification



Uncertainty quantification

Table 1. Performance of the three uncertainty quantifications and FOCAL on example tasks, a bunch of Meta-World ML1 tasks with normalized scores. "IDAQ+Return" is short for IDAQ with the **Return-based** quantification. For Meta-World tasks, "-V2" is omitted for brevity. "Med" represents results trained on medium quality datasets.

Example Env	IDAQ+Prediction Error	IDAQ+Prediction Variance	IDAQ+Return	FOCAL
Push	0.31 ± 0.13	0.13 ± 0.07	0.55 ± 0.10	$0.34 \ \pm \ 0.14$
Pick-Place	$0.07~\pm~0.05$	0.04 ± 0.03	0.20 ± 0.03	$0.07 \hspace{.1in} \pm \hspace{.1in} 0.02$
Soccer	$0.18~\pm~0.03$	0.23 ± 0.03	0.44 ± 0.04	$0.11~\pm~0.03$
Drawer-Close	$1.00~\pm~0.00$	0.99 ± 0.01	0.99 ± 0.02	0.96 ± 0.04
Reach	0.87 ± 0.01	$0.49~\pm~0.03$	0.85 ± 0.03	$0.62~\pm~0.05$
Sweep (Med)	0.15 ± 0.03	0.06 ± 0.02	0.59 ± 0.13	0.38 ± 0.13
Peg-Insert-Side (Med)	$0.03~\pm~0.02$	0.03 ± 0.01	0.30 ± 0.14	$0.10 \hspace{.1in} \pm \hspace{.1in} 0.07$
Point-Robot	$ $ -5.70 \pm 0.05	$ $ -21.29 \pm 0.85	-5.10 ± 0.26	-15.38 ± 0.95

Meta-World ML1

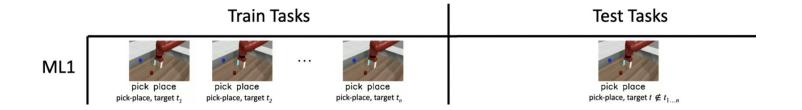


Table 2. Algorithms' normalized scores averaged over 50 Meta-World ML1 task sets. Scores are normalized by expert-level policy return.

IDAQ	FOCAL	MACAW		MACAW with Expert Context	BOReL
$\textbf{0.73}~\pm~0.07$	$0.53~\pm~0.1$	$0.18~\pm~0.1$	$0.67~\pm~0.07$	$0.68~\pm~0.07$	$0.04~\pm~0.01$

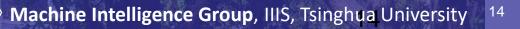


Table 3. Performance on example tasks, a bunch of Meta-World ML1 tasks with normalized scores.						
Example Env	IDAQ	FOCAL	MACAW	BOReL		
Coffee-Push	1.26 ± 0.13	0.66 ± 0.07	$0.01~\pm~0.01$	$0.00~\pm~0.00$		
Faucet-Close	1.12 ± 0.01	$1.06~\pm~0.02$	$0.07~\pm~0.01$	$0.13~\pm~0.03$		
Faucet-Open	$1.05~\pm~0.02$	$1.01~\pm~0.02$	$0.08~\pm~0.04$	$0.12~\pm~0.05$		
Door-Close	0.99 ± 0.00	$0.97~\pm~0.01$	$0.00~\pm~0.00$	$0.37~\pm~0.19$		
Drawer-Close	0.99 ± 0.02	0.96 ± 0.04	$0.53~\pm~0.50$	$0.00~\pm~0.00$		
Door-Lock	0.97 ± 0.01	$0.90~\pm~0.02$	$0.25~\pm~0.11$	$0.14~\pm~0.00$		
Plate-Slide-Back	0.96 ± 0.02	$0.58~\pm~0.06$	$0.21~\pm~0.17$	$0.01~\pm~0.00$		
Dial-Turn	0.91 ± 0.05	$0.84~\pm~0.09$	$0.00~\pm~0.00$	$0.00~\pm~0.00$		
Handle-Press	0.88 ± 0.05	0.87 ± 0.02	$0.28~\pm~0.10$	$0.01~\pm~0.00$		
Hammer	0.84 ± 0.06	$0.59~\pm~0.07$	$0.10~\pm~0.01$	$0.09~\pm~0.01$		
Button-Press	0.74 ± 0.08	0.68 ± 0.14	$0.02~\pm~0.01$	$0.01~\pm~0.01$		
Push-Wall	0.71 ± 0.15	$0.43~\pm~0.06$	$0.23~\pm~0.18$	$0.00~\pm~0.00$		
Hand-Insert	0.63 ± 0.04	$0.29~\pm~0.07$	$0.02~\pm~0.01$	$0.00~\pm~0.00$		
Peg-Unplug-Side	0.56 ± 0.07	$0.19~\pm~0.09$	$0.00~\pm~0.00$	$0.00~\pm~0.00$		
Bin-Picking	$0.53~\pm~0.16$	$0.31~\pm~0.21$	0.66 ± 0.11	$0.00~\pm~0.00$		
Soccer	0.44 ± 0.04	$0.11~\pm~0.03$	0.38 ± 0.31	$0.04~\pm~0.02$		
Coffee-Pull	0.40 ± 0.05	$0.23~\pm~0.04$	$0.19~\pm~0.12$	$0.00~\pm~0.00$		
Pick-Place-Wall	$0.28~\pm~0.12$	$0.09~\pm~0.04$	0.39 ± 0.25	$0.00~\pm~0.00$		
Pick-Out-Of-Hole	0.26 ± 0.25	$0.16~\pm~0.16$	0.59 ± 0.06	$0.00~\pm~0.00$		
Handle-Pull-Side	$\textbf{0.14}~\pm~0.04$	$\textbf{0.13}~\pm~0.09$	$0.00~\pm~0.00$	$0.00~\pm~0.00$		
Cheetah-Vel	-171.5 ± 22.00	$ $ -287.7 \pm 30.6	-234.0 ± 23.5	-301.4 ± 36.8		
Point-Robot	-5.10 ± 0.26	-15.38 ± 0.95	-14.61 ± 0.98	-17.28 ± 1.16		
Point-Robot-Sparse	7.78 ± 0.64	$0.83~\pm~0.37$	$0.00~\pm~0.00$	$0.00~\pm~0.00$		

Table 3. Performance on example tasks, a bunch of Meta-World ML1 tasks with normalized scores.

Summary

- Formalize the transition-reward distribution shift in offline meta-RL with online adaptation
- Introduce IDAQ, a novel in-distribution online adaptation method
 - Find that a return-based uncertainty quantification performs effectively in medium or expert datasets
- IDAQ achieves state-of-the-art performance on Meta-World ML1 benchmark with 50 tasks
 - Also perform better or comparably than offline adaptation baselines with expert context
 - Suggest that offline context may not be necessary for meta-testing

Thanks for your listening

