

Structured Cooperative Learning with Graphical Model Priors

Shuangtong Li¹, Tianyi Zhou², Xinmei Tian¹³, Dacheng Tao⁴

¹University of Science and Technology of China ²University of Maryland, College Park ³Institute of Artificial Intelligence, Hefei Comprehensive National Science Center ⁴The University of Sydney

[1] Shuangtong Li, Tianyi Zhou, Xinmei Tian, and Dacheng Tao. Learning to collaborate in decentralized learning of personalized models. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

Motivation

DLPM Challenges:

- How to determine when and which clients should cooperate?
- How to cooperate when personal tasks and data cannot be shared?
- To save communication cost, how to discover a sparse cooperation graph?
- How to adjust the graph adaptive to model changes in training process?

Structured Cooperative Learning (SCooL):

- *A general probabilistic modelling framework.
- Solution optimize personalized models θ_{1:K} and cooperation graph Y.
 Different graphical model priors of Y warious novel DLPM algorithms.
 A systematic optimization method: variational inference.

personalized

cooperatio

graph

model θ_i

SCooL Framework

SCool Instantiations

(a) SCooL-Dirac $Y \sim \delta$ (w) SCooL-Dirac is equivalent to DPSGD [2].

(b) SCooL-SBM Y~Stochastic Block model (SBM) [3]

(c) SCooL-attention $Y_{ij} \sim \text{Attention}(\theta i, \theta j)$ $p_{ij} = \frac{exp(f(\theta_i, \theta_j))}{\sum_l exp(f(\theta_i, \theta_l))}$ $\vec{Y} \sim Categorical(pi1, \dots pik)$

[2] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent. In Advances in Neural Information Processing Systems, 2017.

[3] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First steps. Social networks, 5(2):109–137, 1983.

EM Algorithm for SCooL

We derive EM algorithms for SCooL models via variational inference method.

ELBO:
$$\log p(X|\Phi) = \log \int p(X, Z|\Phi) dZ$$

 $\geq \int q(Z) \log \frac{p(X, Z|\Phi)}{q(Z)} dZ := H(q, \Phi).$

E-step: update cooperation graph Y.

$$w_{ij} \leftarrow F\left(\log P(D_j|\theta_i), \beta, \Phi\right) \, \forall i, j \in [K]$$

M-step: optimize the local models $\theta_{1:K}$.

$$\theta_i \leftarrow \theta_i - \eta_1 \bigg(\sum_{j \neq i} w_{ij} \nabla L(D_j; \theta_i) + \nabla L(D_i; \theta_i) + G(\beta, \Phi) \bigg)$$

Experiments

Methodology	Algorithm	CIFAR-10	CIFAR-100	MinilmageNet
Local only	local SGD	87.5±7.02	55.47±5.20	41.59 ± 7.71
Federated	FedAvg	70.65土10.64	40.15±7.25	34.26 <u>+</u> 6.01
	FOMO	88.72±5.41	52.44土5.09	44.56±4.31
	Ditto	87.32 <u>±</u> 6.42	54.28±5.31	42.73 ± 5.19
Decentralized	D-PSGD(1s)	83.01±7.34	40.56±6.94	30.26±5.75
	D-PSGD(5e)	75.89±6.65	35.03±4.83	28.41土5.18
	CGA(1s)	65.65±12.66	30.81土10.79	27.65土11.78
	CGA(5e)	diverge	diverge	diverge
	SPDB(1s)	82.36 ± 7.14	54.29 <u>±</u> 6.15	39.17±3.93
	SPDB(5e)	81.15 ± 7.06	53.23±7.48	35.93±5.05
	Dada	85.65±6.36	57.61土5.45	37.81±7.15
	meta-L2C	92.10±4.71	58.28±3.09	48.80±4.17
SCooL (Ours)	SCool -SBM	91.37±5.03	58.76±4.30	48.69±5.21
	SCool -attention	92.21±5.15	59.47±4.95	49.53±3.29

we propose a **general probabilistic modelling framework**: Structured Cooperative Learning (SCooL), for DLPM problems.

*****SCooL jointly optimizes **personalized models** $\theta_{1:K}$ and **cooperation graph Y**.

*Different graphical model priors of Y generate various novel DLPM algorithms.

SCooL uses a systematic optimization method: variational inference.

SCooL outperfroms previous federated / decentralized learning baselines in experiments.