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qDLPM Challenges:
• How to determine when and which clients should cooperate?
• How to cooperate when personal tasks and data cannot be shared?
• To save communication cost, how to discover a sparse cooperation graph?
• How to adjust the graph adaptive to model changes in training process?

qStructured Cooperative Learning (SCooL):
vA general probabilistic modelling framework.
vJointly optimize personalized models θ1:K and cooperation graph Y.
vDifferent graphical model priors of Y                various novel DLPM algorithms.
vA systematic optimization method: variational inference.
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Probabilistic Modeling with Cooperation Graph

(1) Joint Likelihood P (D1:K|θ1:K, Y )
       case 1.1 Y does not affect data distribution.

       case 1.2 Y coordinates the training process.

(2) Joint Priors P(θ1:K,Y)
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(a) SCooL-Dirac
Y ~ δ (w)
SCooL-Dirac is equivalent to DPSGD [2].

(b) SCooL-SBM
Y~Stochastic Block model (SBM) [3]

(c) SCooL-attention
Yij ~ Attention(θi,θj)

[2] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized algorithms outperform centralized algorithms? a case study for decentralized 
parallel stochastic gradient descent. In Advances in Neural Information Processing Systems, 2017.
[3] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First steps. Social networks, 5(2):109–137, 1983.
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We derive EM algorithms for SCooL models via variational inference method.

ELBO: 

E-step: update cooperation graph Y.

M-step: optimize the local models θ1:K.
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Methodology Algorithm CIFAR-10 CIFAR-100 MiniImageNet

Local only Iocal SGD 87.5士7.02 55.47士5.20 41.59士7.71

Federated

FedAvg 70.65土10.64 40.15土7.25 34.26士6.01 

FOMO 88.72士5.41 52.44土5.09 44.56士4.31 

Ditto 87.32土6.42 54.28士5.31 42.73士5.19

Decentralized

D-PSGD(1s) 83.01士7.34 40.56士6.94 30.26士5.75

D-PSGD(5e) 75.89土6.65 35.03土4.83 28.41土5.18
CGA(1s) 65.65士12.66 30.81土10.79 27.65土11.78

CGA(5e) diverge diverge diverge

SPDB(1s) 82.36士7.14 54.29土6.15 39.17土3.93
SPDB(5e) 81.15士7.06 53.23士7.48 35.93土5.05

Dada 85.65士6.36 57.61土5.45 37.81士7.15

meta-L2C 92.10士4.71 58.28士3.09 48.80士4.17

SCooL (Ours)
SCooI -SBM 91.37士5.03 58.76士4.30 48.69土5.21 

SCooI -attention 92.21土5.15 59.47士4.95 49.53士3.29
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we propose a general probabilistic modelling framework: Structured Cooperative Learning 
(SCooL), for DLPM problems. 

vSCooL jointly optimizes personalized models θ1:K and cooperation graph Y.

vDifferent graphical model priors of Y generate various novel DLPM algorithms.

vSCooL uses a systematic optimization method: variational inference.

vSCooL outperfroms previous federated / decentralized learning baselines in experiments.


