
MonoFlow:
Rethinking Divergence GANs via the Perspective of
Wasserstein Gradient Flows

Mingxuan Yi1, Zhanxing Zhu2 3, Song Liu1

1 University of Bristol 2 Changping National Lab 3 Peking University



Introduction

The adversarial game [Goodfellow et al., 2014]:

min
g

max
d
V(g,d) = Ex∼pdata

{
log σ[d(x)]

}
+ Ez∼pz

{
log

(
1− σ[d(g(z))]

)}
(1)

Existing issues:
1. The discriminator d(x) loses the dependence on the generator’s
parameter. Integrating out x in the expectation, V is not a
function of g.

2. The generator only minimizes the second term of the
Jensen-Shannon divergence Ez∼pz

{
log

(
1− σ[d(g(z))]

)}
which is,

however, a KL divergence up to a constant.
3. Practical algorithms are inconsistent with the theory, a heuristic
trick “non-saturated loss” is commonly used to mitigate the
gradient vanishing problem. The NS loss takes the form
−Ez∼pz

{
log σ[d(g(z))]

}
. 1



Introduction

We can even modify the generator loss to the logit loss
−Ez∼pz

{
d(g(z))

}
or the arcsinh loss −Ez∼pz

{
arcsinh

(
d(g(z))

)}
.

Figure 1: Generated Celeb-A faces with the logit loss and the arcsinh loss.

All of the above generator losses satisfy

−Ez∼pz
{
h[d(g(z))]

}
,

where h : R → R is a monotonically increasing function with
h′(·) > 0.

2



Introduction

The adversarial game framework lacks a rigorous explanation to
these issues.

GAN theory needs to be reformulated!

3



Wasserstein Gradient Flows

Wasserstein space: Euclidean space:

−∇W2F(qt)

pq0

qt

W2(q0,p)

xt ∼ qt

vt = −∇x
δF
δqt (x)

∣∣∣
x=xt

p

The marginal qt evolves along the gradient flow to decrease F(qt)
and the associated particles evolve with the vector field vt [Ambrosio
et al., 2008].

4



Probability Flow ODEs

Given f-divergences

F(qt) =
∫
f (rt(x))qt(x)dx, rt(x) =

p(x)
qt(x)

,

where f ′′(x) > 0 implies f is strictly convex.

Wasserstein gradient flows define a probability flow ODE in Euclidean
space,

dxt = vt(xt)dt

The vector field of the probability flow ODE:

vt(x) = rt(x)2f ′′(rt(x))∇x log rt(x), (2)

such that the non-negative term rt(x)2f ′′(rt(x)) rescales ∇x log rt(x).

5



MonoFlow

MonoFlow
MonoFlow is defined by the following ODE:

dxt = ∇xh
(
log rt(xt)

)
dt = h′

(
log rt(xt)

)
∇x log rt(xt)dt

where h : R → R is a monotonically increasing function with
h′(·) > 0,

6



Property

Implicitly defines Wasserstein gradient flows of f-divergences: Given
a function h with h′(·) > 0, there exists a strictly convex function f
satisfying

h(log r) = r f ′(r)− f(r),

MonoFlow is the probability Flow ODE of the above f-divergence.

7



Simulating MonoFlow

1. Two sample density ratio estimation (training the discriminator):

max
d

Ex∼p
[
ϕ
(
d(x)

)]
+ Ex∼qt

[
ψ
(
d(x)

)]
, (3)

where ϕ and ψ are scalar functions. Under certain conditions, the
optimal d∗ satisfies

rt(x) := p(x)/qt(x) = −ψ′(d∗(x))/ϕ′(d∗(x))
The vector field is obtained via:

vt(x) = ∇xh
(
log rt(x)

)

8



Simulating MonoFlow

2. Learning to parameterize MonoFlow (distilling):

• Sample xt = gθ(z) ∼ qt, z ∼ pz, where gθ is a generator taking as
input random noises z.

• Move particles along the vector field with step size α, i.e.
forward Euler method, xt+α = xt + αvt(xt)

• Minimize the loss

min
θ

Ez∼pz∥gθ(z)− xt+α∥22 ⇐⇒ min
θ

−Ez∼pz [h(log rt(gθ(z)))],

to encourage the generator to draw particles more similar to
xt+α.

9



Unified Formulation of Divergence GANs

The objectives for the discriminator and the generator can be
entirely different,

max
d

Ex∼pdata

[
ϕ
(
d(x)

)]
+ Ez∼pz

[
ψ
(
d(g(z))

)]
min
g

−Ez∼pz
[
hT

(
d(g(z))

)]
,

where hT (d) = h
(
log(T (d))

)
, T (d) = −ψ′(d)/ϕ′(d) and h can be any

increasing function with h′(·) > 0.

10



Empirical Results

Let’s go back to the GAN [Goodfellow et al., 2014]. For a binary
classification problem,

max
d

Ex∼pdata

{
log σ[d(x)]

}
+ Ez∼pz

{
log

(
1− σ[d(g(z))]

)}
,

where ϕ(d) = log σ(d) and ψ(d) = log(1− σ(d)).

The optimal d∗ satisfies

r(x) := pdata(x)/pg(x) = −ψ′(d∗(x))/ϕ′(d∗(x))
=⇒ d∗(x) = log r(x)

11



Empirical Results

Figure 2: Generator losses

1. Vanilla loss: h(d) = − log(1− σ(d))
2. Non-saturated (NS) loss: h(d) = log(σ(d)) ✓
3. Maximum likelihood estimation (MLE): h(d) = exp(d)
4. Logit loss: h(d) = d ✓
5. Arcsinh loss: h(d) = arcsinh(d) ✓

12



An Embarrassingly Simple Trick to Fix the Vanilla GAN

Shifting the vanilla loss

h(d) = − log(1− σ(d+ C))

Figure 3: Generator losses

Figure 4: From left to right C = 0, 1, 3, 5
13



References

References

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in
metric spaces and in the space of probability measures. Springer
Science & Business Media, 2008.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets. In NeurIPS, 2014.

14


	References

