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Bayesian Optimisation

• Bayesian Optimisation (BO) [Srinivas et al, 2010] aims to optimise a black-box function
by using a surrogate Gaussian Process (GP) model
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• Based on the GP model, we optimise acqusition function
to find most promising point to query next

• This works great with a small number of dimensions;
struggles in high-dimensional spaces
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Bayesian Optimisation with Additive Functions

• One solution: Assume the additive function ([Kandasamy et al, 2015],
[Rolland et al, 2018], [Han et al, 2021])

f (x) =
∑
c∈g

fc(x[c])

for each group of dimensions c in decomposition g , for example if g = {(1, 4), (2), (3)}:

f (x1, x2, x3, x4) = f1,4(x1, x4) + f2(x2) + f3(x3)

• Problem: If the function is black-box, we do not know g

• Existing methods learn g by maximum likelihood by selecting g that produces model with
highest marginal likelihood p(D|g)
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Misleading decomposition learners
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• State-of-art Tree algorithm [Han et al, 2021] gets stuck in a sub-optimal mode
• This is because, in BO we have limited, local data

→ hard to extrapolate, easy to overfit
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Analysing decomposition rules

• Instead of relying on limited, local data, let us consider data-independent pre-defined
schemes for choosing decompositions

Theorem (Corollary 4.2 in the paper)

Let the black-box function f be selected by an adversary from an RKHS Hg of kernel kg ,
defined over some decomposition g that is also selected by an adversary. After T rounds, a
UCB-style BO algorithm with an S(t) : Z+ → G decomposition rule, incurs with a probability
of at least 1− δa − δB the following total cumulative regret RT :

RT = O


√
T γT︸︷︷︸

Kernel Complexity

B +

√√√√ln
1

δA
+ γT︸︷︷︸

Kernel Complexity

+
1

δB
ES

[
T∑
t=1

ϵt

]
︸ ︷︷ ︸

Expected mismatch


 ,

where B = maxt∈T∥f̂t∥t and ∥·∥t denotes the norm in Ht . 11 / 20



Analysing decomposition rules

• Want both γt and ϵt to be ”small”

• Making γt ”small”
γt measures the ”complexity” of proposed decompositions. If we restrict our scheme to
only suggest tree decompositions [Han et al, 2021], we can favourably bound γt

• Making ϵt ”small”
ϵt measures the mismatch between the true decomposition and the one we proposed. We
show that for tree decomp., the scheme with lowest mismatch chooses decompositions
uniformly at random.

• Our algorithm should select tree decompositions randomly!
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Practical Algorithm

Algorithm RDUCB

1: Inputs: Black-box function f , evaluation budget N,
initial budget Ninit, exploration bonuses {βt}Nt=1

2: Evaluate Ninit random inputs in f & populate DNinit

3: for t = Ninit + 1 to N do
4: Sample tree decomposition g
5: Fit a GP using Dt−1 with the kernel kg (·)
6: Maximise α

(add-UCB)
t (x |Dt−1) with message passing

7: Evaluate f on the suggested query & add to Dt−1

8: end for
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Selected Empirical Results
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Performance as dimensionality increases

75 85 100 250
Dimensions

-10%

-5%

0%

5%

10%

15%

20%

25%
Im

pr
ov

em
en

t o
ve

r T
re

e
Stybtang

20 50 140 180
Dimensions

-1.0%

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%
Lasso DNA

18 / 20



Plug&Play for HEBO [Cowen-Rivers et al, 2022]

HEBO = Multi-acquisition + Input warping + Evolution + BO

RDHEBO = Random Decompositions + HEBO

Problem HEBO RDHEBO

MLP-Adam 92.68± 0.22 93.67± 0.30
MLP-SGD 90.66± 0.81 91.65± 0.10

DT 79.42± 0.45 80.79± 0.15
RF 84.97± 0.32 87.64± 2.00

Average 86.93± 0.45 88.44± 0.64
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