
Are Random Decompositions all we need in

High-Dimensional Bayesian Optimisation?

Juliusz Ziomek∗, Haitham Bou-Ammar∗†

∗Huawei Noah’s Ark Lab, †University College London

ICML23, 23 – 29 Jul 2023

1 / 20



Bayesian Optimisation

• Bayesian Optimisation (BO) [Srinivas et al, 2010] aims to optimise a black-box function
by using a surrogate Gaussian Process (GP) model

0 1 2 3 4 5
X

0.2

0.0

0.2

0.4

0.6

Y

• Based on the GP model, we optimise acqusition function
to find most promising point to query next

• This works great with a small number of dimensions;
struggles in high-dimensional spaces

2 / 20



Bayesian Optimisation

• Bayesian Optimisation (BO) [Srinivas et al, 2010] aims to optimise a black-box function
by using a surrogate Gaussian Process (GP) model

0 1 2 3 4 5
X

0.2

0.0

0.2

0.4

0.6

Y

• Based on the GP model, we optimise acqusition function
to find most promising point to query next

• This works great with a small number of dimensions;
struggles in high-dimensional spaces

3 / 20



Bayesian Optimisation

• Bayesian Optimisation (BO) [Srinivas et al, 2010] aims to optimise a black-box function
by using a surrogate Gaussian Process (GP) model

0 1 2 3 4 5
X

0.2

0.0

0.2

0.4

0.6

Y

• Based on the GP model, we optimise acqusition function
to find most promising point to query next

• This works great with a small number of dimensions;
struggles in high-dimensional spaces

4 / 20



Bayesian Optimisation with Additive Functions

• One solution: Assume the additive function ([Kandasamy et al, 2015],
[Rolland et al, 2018], [Han et al, 2021])

f (x) =
∑
c∈g

fc(x[c])

for each group of dimensions c in decomposition g , for example if g = {(1, 4), (2), (3)}:

f (x1, x2, x3, x4) = f1,4(x1, x4) + f2(x2) + f3(x3)

• Problem: If the function is black-box, we do not know g

• Existing methods learn g by maximum likelihood by selecting g that produces model with
highest marginal likelihood p(D|g)

5 / 20



Bayesian Optimisation with Additive Functions

• One solution: Assume the additive function ([Kandasamy et al, 2015],
[Rolland et al, 2018], [Han et al, 2021])

f (x) =
∑
c∈g

fc(x[c])

for each group of dimensions c in decomposition g , for example if g = {(1, 4), (2), (3)}:

f (x1, x2, x3, x4) = f1,4(x1, x4) + f2(x2) + f3(x3)

• Problem: If the function is black-box, we do not know g

• Existing methods learn g by maximum likelihood by selecting g that produces model with
highest marginal likelihood p(D|g)

6 / 20



Bayesian Optimisation with Additive Functions

• One solution: Assume the additive function ([Kandasamy et al, 2015],
[Rolland et al, 2018], [Han et al, 2021])

f (x) =
∑
c∈g

fc(x[c])

for each group of dimensions c in decomposition g , for example if g = {(1, 4), (2), (3)}:

f (x1, x2, x3, x4) = f1,4(x1, x4) + f2(x2) + f3(x3)

• Problem: If the function is black-box, we do not know g

• Existing methods learn g by maximum likelihood by selecting g that produces model with
highest marginal likelihood p(D|g)

7 / 20



Misleading decomposition learners

0 200 400 600 800 1000
0

200

400

600

800

1000

Initial design
Tree

• State-of-art Tree algorithm [Han et al, 2021] gets stuck in a sub-optimal mode
• This is because, in BO we have limited, local data

→ hard to extrapolate, easy to overfit

8 / 20



Misleading decomposition learners

0 200 400 600 800 1000
0

200

400

600

800

1000

Initial design
Tree

• State-of-art Tree algorithm [Han et al, 2021] gets stuck in a sub-optimal mode

• This is because, in BO we have limited, local data
→ hard to extrapolate, easy to overfit

9 / 20



Misleading decomposition learners

0 200 400 600 800 1000
0

200

400

600

800

1000

Initial design
Tree

• State-of-art Tree algorithm [Han et al, 2021] gets stuck in a sub-optimal mode
• This is because, in BO we have limited, local data
→ hard to extrapolate, easy to overfit

10 / 20



Analysing decomposition rules

• Instead of relying on limited, local data, let us consider data-independent pre-defined
schemes for choosing decompositions

Theorem (Corollary 4.2 in the paper)

Let the black-box function f be selected by an adversary from an RKHS Hg of kernel kg ,
defined over some decomposition g that is also selected by an adversary. After T rounds, a
UCB-style BO algorithm with an S(t) : Z+ → G decomposition rule, incurs with a probability
of at least 1− δa − δB the following total cumulative regret RT :

RT = O


√
T γT︸︷︷︸

Kernel Complexity

B +

√√√√ln
1

δA
+ γT︸︷︷︸

Kernel Complexity

+
1

δB
ES

[
T∑
t=1

ϵt

]
︸ ︷︷ ︸

Expected mismatch


 ,

where B = maxt∈T∥f̂t∥t and ∥·∥t denotes the norm in Ht . 11 / 20



Analysing decomposition rules

• Want both γt and ϵt to be ”small”

• Making γt ”small”
γt measures the ”complexity” of proposed decompositions. If we restrict our scheme to
only suggest tree decompositions [Han et al, 2021], we can favourably bound γt

• Making ϵt ”small”
ϵt measures the mismatch between the true decomposition and the one we proposed. We
show that for tree decomp., the scheme with lowest mismatch chooses decompositions
uniformly at random.

• Our algorithm should select tree decompositions randomly!

12 / 20



Analysing decomposition rules

• Want both γt and ϵt to be ”small”

• Making γt ”small”
γt measures the ”complexity” of proposed decompositions. If we restrict our scheme to
only suggest tree decompositions [Han et al, 2021], we can favourably bound γt

• Making ϵt ”small”
ϵt measures the mismatch between the true decomposition and the one we proposed. We
show that for tree decomp., the scheme with lowest mismatch chooses decompositions
uniformly at random.

• Our algorithm should select tree decompositions randomly!

13 / 20



Analysing decomposition rules

• Want both γt and ϵt to be ”small”

• Making γt ”small”
γt measures the ”complexity” of proposed decompositions. If we restrict our scheme to
only suggest tree decompositions [Han et al, 2021], we can favourably bound γt

• Making ϵt ”small”
ϵt measures the mismatch between the true decomposition and the one we proposed. We
show that for tree decomp., the scheme with lowest mismatch chooses decompositions
uniformly at random.

• Our algorithm should select tree decompositions randomly!

14 / 20



Analysing decomposition rules

• Want both γt and ϵt to be ”small”

• Making γt ”small”
γt measures the ”complexity” of proposed decompositions. If we restrict our scheme to
only suggest tree decompositions [Han et al, 2021], we can favourably bound γt

• Making ϵt ”small”
ϵt measures the mismatch between the true decomposition and the one we proposed. We
show that for tree decomp., the scheme with lowest mismatch chooses decompositions
uniformly at random.

• Our algorithm should select tree decompositions randomly!

15 / 20



Practical Algorithm

Algorithm RDUCB

1: Inputs: Black-box function f , evaluation budget N,
initial budget Ninit, exploration bonuses {βt}Nt=1

2: Evaluate Ninit random inputs in f & populate DNinit

3: for t = Ninit + 1 to N do
4: Sample tree decomposition g
5: Fit a GP using Dt−1 with the kernel kg (·)
6: Maximise α

(add-UCB)
t (x |Dt−1) with message passing

7: Evaluate f on the suggested query & add to Dt−1

8: end for

16 / 20



Selected Empirical Results

0 100 200 300 400 500
Evaluation step

2.5

3.0

3.5

4.0

4.5

5.0

Be
st

 re
gr

et

1e3

Tree
RDUCB (ours)
Random Search
REMBO
HeSBO
CoordinateLineBO

(a) 250-d Stybtang Function

0 25 50 75 100 125 150 175 200
Evaluation step

150

200

250

300

350

400

450

500

Be
st

 re
gr

et

(b) 74-d misc05inf MIP Task

0 200 400 600 800 1000
Evaluation step

3.0

3.1

3.2

3.3

3.4

3.5

3.6

Be
st

 re
gr

et

1e 1

(c) 180-d DNA LassoBench Dataset

17 / 20



Performance as dimensionality increases

75 85 100 250
Dimensions

-10%

-5%

0%

5%

10%

15%

20%

25%
Im

pr
ov

em
en

t o
ve

r T
re

e
Stybtang

20 50 140 180
Dimensions

-1.0%

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%
Lasso DNA

18 / 20



Plug&Play for HEBO [Cowen-Rivers et al, 2022]

HEBO = Multi-acquisition + Input warping + Evolution + BO

RDHEBO = Random Decompositions + HEBO

Problem HEBO RDHEBO

MLP-Adam 92.68± 0.22 93.67± 0.30
MLP-SGD 90.66± 0.81 91.65± 0.10

DT 79.42± 0.45 80.79± 0.15
RF 84.97± 0.32 87.64± 2.00

Average 86.93± 0.45 88.44± 0.64

19 / 20



References

Srinivas et al (2010)

Gaussian process optimization in the bandit setting: No regret and experimental design, ICML

Kandasamy et al (2015)

High dimensional Bayesian optimisation and bandits via additive models, ICML

Rolland et al (2018)

High-dimensional Bayesian optimization via additive models with overlapping groups, AISTATS

Han et al (2021)

High-dimensional Bayesian optimization via tree-structured additive models, AISTATS

Cowen-Rivers et al (2022)

HEBO: pushing the limits of sample-efficient hyper-parameter optimisation, JAIR

20 / 20


