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Bayesian Optimisation

® Bayesian Optimisation (BO) [Srinivas et al, 2010] aims to optimise a black-box function
by using a surrogate Gaussian Process (GP) model
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Bayesian Optimisation

® Bayesian Optimisation (BO) [Srinivas et al, 2010] aims to optimise a black-box function
by using a surrogate Gaussian Process (GP) model
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® Based on the GP model, we optimise acqusition function
to find most promising point to query next

W

HUAWEI

3/20



Bayesian Optimisation

® Bayesian Optimisation (BO) [Srinivas et al, 2010] aims to optimise a black-box function
by using a surrogate Gaussian Process (GP) model
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® Based on the GP model, we optimise acqusition function

to find most promising point to query next
® This works great with a small number of dimensions; S'é
struggles in high-dimensional spaces HUAWEI
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Bayesian Optimisation with Additive Functions

® One solution: Assume the additive function ([Kandasamy et al, 2015],
[Rolland et al, 2018], [Han et al, 2021])

F(x) = fe(x(q)

ceg

for each group of dimensions ¢ in decomposition g, for example if g = {(1,4),(2),(3)}:

f(x1,x2, X3, Xa) = f14(x1,xa) + F2(x2) + 3(x3)
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Bayesian Optimisation with Additive Functions

® One solution: Assume the additive function ([Kandasamy et al, 2015],
[Rolland et al, 2018], [Han et al, 2021])

F(x) = fe(x(q)

ceg
for each group of dimensions ¢ in decomposition g, for example if g = {(1,4),(2),(3)}:
f(xa, x2, x3,xa) = fra(x1, xa) + f2(x2) + 3(x3)

® Problem: If the function is black-box, we do not know g
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Bayesian Optimisation with Additive Functions

® One solution: Assume the additive function ([Kandasamy et al, 2015],
[Rolland et al, 2018], [Han et al, 2021])

F(x) = fe(x(q)

ceg

for each group of dimensions ¢ in decomposition g, for example if g = {(1,4),(2),(3)}:
f(xa, x2, x3,xa) = fra(x1, xa) + f2(x2) + 3(x3)

® Problem: If the function is black-box, we do not know g

® Existing methods learn g by maximum likelihood by selecting g that produces model with
highest inal likelihood p(D
ighest marginal likelihood p(D|g) S'é
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Misleading decomposition learners

1000

600 8
400

200

0 200 400 600 800 1000

A

HUAWEI

8/20



Misleading decomposition learners
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® State-of-art Tree algorithm [Han et al, 2021] gets stuck in a sub-optimal mode S’A
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Misleading decomposition learners
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® State-of-art Tree algorithm [Han et al, 2021] gets stuck in a sub-optimal mode S’A
® This is because, in BO we have limited, local data HUAWEI

— hard to extrapolate, easy to overfit 10/20



Analysing decomposition rules

® |nstead of relying on limited, local data, let us consider data-independent pre-defined
schemes for choosing decompositions

Theorem (Corollary 4.2 in the paper)

Let the black-box function f be selected by an adversary from an RKHS HE of kernel k&,
defined over some decomposition g that is also selected by an adversary. After T rounds, a
UCB-style BO algorithm with an S(t) : ZT — G decomposition rule, incurs with a probability
of at least 1 — 6, — dg the following total cumulative regret Ry :

T
1 1
Rr=0| |T v B+ |In—+ T — Es|) e ,
~— 5A ~— 53 =
Kernel Complexity Kernel Complexity —

-

Expected mismatch

where B = max;c || %:||+ and ||-||+ denotes the norm in H.. e



Analysing decomposition rules

® Want both +; and ¢; to be "small”
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Analysing decomposition rules

® Want both +; and ¢; to be "small”

® Making ~; "small”
~¢+ measures the " complexity” of proposed decompositions. If we restrict our scheme to
only suggest tree decompositions [Han et al, 2021], we can favourably bound ~;
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Analysing decomposition rules

® Want both +; and ¢; to be "small”

® Making ~; "small”
~¢+ measures the " complexity” of proposed decompositions. If we restrict our scheme to
only suggest tree decompositions [Han et al, 2021], we can favourably bound ~;

® Making €; "small”
€; measures the mismatch between the true decomposition and the one we proposed. We

show that for tree decomp., the scheme with lowest mismatch chooses decompositions
uniformly at random.
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Analysing decomposition rules

Want both +; and ¢; to be "small”

Making ~; "small”
~¢+ measures the " complexity” of proposed decompositions. If we restrict our scheme to
only suggest tree decompositions [Han et al, 2021], we can favourably bound ~;

Making e; "small”

€; measures the mismatch between the true decomposition and the one we proposed. We
show that for tree decomp., the scheme with lowest mismatch chooses decompositions
uniformly at random.

Our algorithm should select tree decompositions randomly!
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Practical Algorithm

Algorithm RDUCB

1:

Inputs: Black-box function f, evaluation budget N,
initial budget Ny, exploration bonuses {3:}N_,
Evaluate Nyt random inputs in f & populate Dy, .
for t = Nipit +1 to N do

Sample tree decomposition g

Fit a GP using D¢_1 with the kernel kg (-)

Maximise agadd_UCB)(xlDt_l) with message passing

Evaluate f on the suggested query & add to D;_;
end for
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Selected Empirical Results
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Performance as dimensionality increases

Improvement over Tree

-10% 1

Stybtang

Lasso DNA

25% A

20% A

15%

10%

5% q

0% 1

-5%

3.0%

2.5%

2.0%

1.5%

1.0%

0.5%

0.0%

-0.5%

-1.0%

A_..-;-____i____i___ -

75

éS 160
Dimensions

250

20 5'0 lle léO
Dimensions

A

HUAWEI

18/20



Plug&Play for HEBO [Cowen-Rivers et al, 2022]

HEBO = Multi-acquisition + Input warping + Evolution + BO

RDHEBO = Random Decompositions + HEBO

Problem ‘ HEBO ‘ RDHEBO

MLP-Adam | 92.68 £+ 0.22 | 93.67 £ 0.30
MLP-SGD | 90.66 +0.81 | 91.65 4 0.10
DT 79.42£0.45 | 80.79 £ 0.15
RF 84.97 +0.32 | 87.64 £ 2.00

Average | 86.93+0.45 | 88.44 +0.64
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