Regularizing a Model-based Policy Stationary Distribution to Stabilize Offline Reinforcement Learning

Shentao Yang, Yihao Feng, Shujian Zhang, Mingyuan Zhou

The University of Texas at Austin

June 19, 2022

Background

- Offline RL: learn policy from static datasets.
 - Offline model-based RL (offline MBRL): use the static datasets to learn the dynamic.

(a) RL pipeline

(b) Offline RL pipeline

(c) Offline MBRL pipeline

Background

Benefits of offline MBRL.

- Offline model-free RL
 - Only know the reward and next state at state-action pairs within the dataset.
 - Dataset size can be small.

- Offline model-based RL
 - Estimate the reward and next state at new state-action pair.
 - Augment the static dataset.

Background

Need proper regularization in offline MBRL.

- Limited dataset \rightarrow estimated model is only accurate nearby.
- Regularization in policy learning \rightarrow avoid bad predictions and model exploitation.

Proposed Method Sketch

- Constrain the learned policy to visit state-action pairs similar to the offline dataset.

Proposed Method Sketch

- Constrain the learned policy to visit state-action pairs similar to the offline dataset.
- Technically: regularize the undiscounted stationary state-action distribution of the learned policy towards the dataset during policy learning.
 - Why undiscounted? The offline dataset is just the rollouts of the data-collecting policy.

Proposed Method Sketch

- Constrain the learned policy to visit state-action pairs similar to the offline dataset.
- Technically: regularize the undiscounted stationary state-action distribution of the learned policy towards the dataset during policy learning.
 - Why undiscounted? The offline dataset is just the rollouts of the data-collecting policy.

- More technically: add a tractable regularizer into the policy optimization objective.
 - Only requires samples from the offline dataset, learned policy, and estimated dynamic.
 - The dynamic can be simply learned by the maximum likelihood estimation.

Practical Implementation: SDM-GAN

- Using augmented dataset $\mathcal{D} := f \cdot \mathcal{D}_{env} + (1 - f) \cdot \mathcal{D}_{model}$, with f = 0.5 as default.

Practical Implementation: SDM-GAN

- Using augmented dataset $\mathcal{D} := f \cdot \mathcal{D}_{env} + (1 f) \cdot \mathcal{D}_{model}$, with f = 0.5 as default.
- Regularizer construction: needs samples from the true data distribution (\mathcal{B}_{true}), and samples from the policy's distribution (\mathcal{B}_{fake}).
 - \mathcal{B}_{true} is just samples from the offline dataset.

- Minimize the Jensen-Shannon divergence via the GAN structure.

Practical Implementation: SDM-GAN

- Using augmented dataset $\mathcal{D} := f \cdot \mathcal{D}_{env} + (1 f) \cdot \mathcal{D}_{model}$, with f = 0.5 as default.
- Regularizer construction: needs samples from the true data distribution (\mathcal{B}_{true}), and samples from the policy's distribution (\mathcal{B}_{fake}).
 - \mathcal{B}_{true} is just samples from the offline dataset.

- Minimize the Jensen-Shannon divergence via the GAN structure.
- Implicit policy:

Results: Toy Experiments

- Behavior-cloning: clone the state (x-axis) action (y-axis) distribution in Fig. (a).
- Compare implicit (Fig. (d)) with deterministic (Fig. (b)) and Gaussian policy (Fig. (c)).
- Both the deterministic and the Gaussian policy fail to capture multiple action modes.
- The implicit policy does capture all the action modes at each state.

Results: Main Method

- SDM-GAN achieves competitive performance on the D4RL benchmark.

Robust and good performance on the challenging Adroit and Maze2D datasets

Results: Ablation Study

(a) Vary proportion of synthetic data

(b) Vary regularization strength

(c) JSD v.s. IPM (Wasserstein-1 dual)

- Synthetic data help learning, but too many can be harmful.
- SDM-GAN is relatively robust to the regularization strength, but cannot remove it.
- SDM-WGAN overall performs worse than SDM-GAN \rightarrow future work on other IPM.

Summary

- Goal: match the undiscounted stationary state-action distribution of the learned policy with the dataset.
- Method: SDM-GAN, offline MBRL method + novel regularizer + flexible policy.

Please scan this QR code for the full paper!

