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Background

- Offline RL: learn policy from static datasets.

- Offline model-based RL (offline MBRL): use the static datasets to learn the dynamic.

(a) RL pipeline (b) Offline RL pipeline (c) Offline MBRL pipeline
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Background
Benefits of offline MBRL.

̂r, ̂s

a

- Offline model-free RL

- Only know the reward and next state at
state-action pairs within the dataset.

- Dataset size can be small.

- Offline model-based RL

- Estimate the reward and next state at
new state-action pair.

- Augment the static dataset.
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Background

Need proper regularization in offline MBRL.

- Limited dataset → estimated model is only accurate nearby.

- Regularization in policy learning → avoid bad predictions and model exploitation.
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Proposed Method Sketch

- Constrain the learned policy to visit state-action pairs similar to the offline dataset.

- Technically: regularize the undiscounted stationary state-action distribution of the
learned policy towards the dataset during policy learning.

- Why undiscounted? The offline dataset is just the rollouts of the data-collecting policy.

- More technically: add a tractable regularizer into the policy optimization objective.

- Only requires samples from the offline dataset, learned policy, and estimated dynamic.

- The dynamic can be simply learned by the maximum likelihood estimation.
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Practical Implementation: SDM–GAN
- Using augmented dataset D := f · Denv + (1 − f ) · Dmodel, with f = 0.5 as default.

- Regularizer construction: needs samples from the true data distribution (Btrue), and
samples from the policy’s distribution (Bfake).

- Btrue is just samples from the offline dataset.

- Bfake is constructed as

- Minimize the Jensen–Shannon divergence via the GAN structure.

- Implicit policy:
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Results: Toy Experiments
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(a) Truth
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(b) Deterministic policy
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(c) Gaussian policy
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(d) Implicit policy

- Behavior-cloning: clone the state (x-axis) action (y-axis) distribution in Fig. (a).

- Compare implicit (Fig. (d)) with deterministic (Fig. (b)) and Gaussian policy (Fig. (c)).

- Both the deterministic and the Gaussian policy fail to capture multiple action modes.

- The implicit policy does capture all the action modes at each state.
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Results: Main Method

- SDM–GAN achieves competitive performance on the D4RL benchmark.
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Results: Ablation Study

0 20 40 60 80

f = 0
f = 0.05

f = 0.5
f = 0.8

f = 1

(a) Vary proportion of synthetic data

0 20 40 60 80

= 2.5

= 10

= 25

No Reg.

(b) Vary regularization strength
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(c) JSD v.s. IPM (Wasserstein-1 dual)

- Synthetic data help learning, but too many can be harmful.

- SDM–GAN is relatively robust to the regularization strength, but cannot remove it.

- SDM–WGAN overall performs worse than SDM–GAN → future work on other IPM.
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Summary

- Goal: match the undiscounted stationary state-action distribution of the learned
policy with the dataset.

- Method: SDM–GAN, offline MBRL method + novel regularizer + flexible policy.

Please scan this QR code for the full paper!
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