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Background

- Offline RL: learn policy from static datasets.

- Offline model-based RL (offline MBRL): use the static datasets to learn the dynamic.
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(a) RL pipeline (b) Offline RL pipeline (c) Offline MBRL pipeline
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Background
Benefits of offline MBRL.
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- Offline model-free RL - Offline model-based RL
- Only know the reward and next state at - Estimate the reward and next state at
state-action pairs within the dataset. new state-action pair.

- Dataset size can be small. - Augment the static dataset.
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Background

Need proper regularization in offline MBRL.
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- Limited dataset — estimated model is only accurate nearby.

- Regularization in policy learning — avoid bad predictions and model exploitation.
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Proposed Method Sketch

- Constrain the learned policy to visit state-action pairs similar to the offline dataset.
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Proposed Method Sketch

- Constrain the learned policy to visit state-action pairs similar to the offline dataset.
- Technically: regularize the undiscounted stationary state-action distribution of the
learned policy towards the dataset during policy learning.

- Why undiscounted? The offline dataset is just the rollouts of the data-collecting policy.
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Proposed Method Sketch

- Constrain the learned policy to visit state-action pairs similar to the offline dataset.

- Technically: regularize the undiscounted stationary state-action distribution of the
learned policy towards the dataset during policy learning.

- Why undiscounted? The offline dataset is just the rollouts of the data-collecting policy.

- More technically: add a tractable regularizer into the policy optimization objective.

- Only requires samples from the offline dataset, learned policy, and estimated dynamic.

- The dynamic can be simply learned by the maximum likelihood estimation.
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Practical Implementation: SDM-GAN
- Using augmented dataset D := f - Deny + (1 — f) - Dioder, With f = 0.5 as default.
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Practical Implementation: SDM-GAN
- Using augmented dataset D := f - Deny + (1 — f) - Dioder, With f = 0.5 as default.

- Regularizer construction: needs samples from the true data distribution (Biue), and
samples from the policy’s distribution (Bg,e)-

- Birue is just samples from the offline dataset.
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- Minimize the Jensen-Shannon divergence via the GAN structure.

- Biake is constructed as
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- Minimize the Jensen-Shannon divergence via the GAN structure.
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- Biake is constructed as

- Implicit policy:
my(s,z) =a
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Results: Toy Experiments

—
(a) Truth (b) Deterministic policy (c) Gaussian policy (d) Implicit policy

Behavior-cloning: clone the state (x-axis) action (y-axis) distribution in Fig. (a).

Compare implicit (Fig. (d)) with deterministic (Fig. (b)) and Gaussian policy (Fig. (c)).

Both the deterministic and the Gaussian policy fail to capture multiple action modes.

The implicit policy does capture all the action modes at each state.
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Results: Main Method

- SDM-GAN achieves competitive performance on the D4RL benchmark.

‘Task Name aDICE cQL FisherBRC TD3+BC OptiDICE MOPO COMBO ‘WMOPO SDM-GAN
halfcheetah-medium 22 390+08 4L1£06 430+05 382+05 47210 S537+£21 S56+13 [425+05 Learn well on the MuJoCo datasets
walker2d-medium 03 6024308 784+18 773440 1434150 00401 409+£289 2274277 | 667418
hopper-medium 12 3454117 99.2+03 99.6 +06 923+ 169 234+72 5184328 66.5+460 (6284143
halfcheetah-medium-replay 2.1 434+£08 432413 419420 398408 525+14  SI8+16 SI8£56 | 417404
walker2d-medium-replay 0.6 164 £ 6.6 384+166 24.6+67 202458 5194158 1424119 548+123 20.3 +4.0
hopper-medium-replay L1 295423  334£28 31427 200449 4714162 345420 939+19 |306+28
halfcheetah-medium-expert 0.8 3454158 925485 90.14£69 0124166 921+83 90.0+105 427130 | 89.1:4£66
walker2d-medium-expert 0.4 7984227 9824131 9614158 67.1£302 3604496 613+361 486+370 | 979449
hopper-medium-cxpert L1 1035£202 1123403 111903 10184185 27836 1126+18 9784193 |104.5+54
maze2d-large 0.0 4374186 20404 876+ 154 13074561 - . - 20 7
maze2d-medium 10.0 307 £98 46+204 591 £477 1408 £ 440 - - - 115.4 4342
maze2d-umaze -15.7 505+ 179 -23+179 138+228 107.6 +33.1 - - - 36.1 + 284
pen-human 33 21+£137  00£39  -17+38 0156 - . - 178417
pen-cloned -29 15+62 20+08 24+14 14+68 - - - 40.6 £ 6.1
pen-cxpert 35 959181 3164244 324+243  -L1k47 - - . 1358+ 117
door-expert 00 8794216 57.64377 -03+00 87.9+258 - - - 935467

Robust and good performance on
the challenging Adroit and Maze2D datasets
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Results: Ablation Study
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(a) Vary proportion of synthetic data (b) Vary regularization strength (c) JSD v.s. IPM (Wasserstein-1 dual)

- Synthetic data help learning, but too many can be harmful.
- SDM-GAN is relatively robust to the regularization strength, but cannot remove it.

- SDM-WGAN overall performs worse than SDM-GAN — future work on other IPM.
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Summary

- Goal: match the undiscounted stationary state-action distribution of the learned
policy with the dataset.

- Method: SDM-GAN, offline MBRL method + novel regularizer + flexible policy.

Please scan this QR code for the full paper!
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