REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy Transfer

Xingyu Liu, Deepak Pathak, Kris M. Kitani Carnegie Mellon University The Robotics Institute

Carnegie Mellon University The Robotics Institute

Problem Formulation: Robot-to-robot Policy Transfer

Problem Formulation: Robot-to-robot Policy Transfer

-0- π_{teacher} $\{(s_{\text{teacher}}, a_{\text{teacher}}, s'_{\text{teacher}})\}$ \rightarrow

4

*0'+01 $\pi_{ ext{student}}$ π_{teacher} $\{(s_{\text{teacher}}, a_{\text{teacher}}, s'_{\text{teacher}})\}$

5

$$\begin{aligned} & \overbrace{\mathbf{x}_{\mathsf{teacher}}}^{\mathsf{teacher}} & \overbrace{\mathbf{x}_{\mathsf{teacher}}}^{\mathsf{teacher}}} & \overbrace{\mathbf{x}_{\mathsf{teacher}}}^{\mathsf{teacher}} & \overbrace{\mathbf{x}_{\mathsf{teacher}}}^{\mathsf{teacher}}} & \overbrace{\mathbf{x}_{\mathsf{teacher}}}^{\mathsf{teacher}} & \overbrace{\mathbf{x}_{\mathsf{teacher}}}^{\mathsf{teacher}}} & \overbrace{\mathbf{x}_{\mathsf{teacher}}}^{\mathsf{teacher}} & \overbrace{\mathbf{x}_{\mathsf{teacher}}}^{\mathsf{teacher}}} & \overbrace{\mathbf{x}_{\mathsf{teacher}}}^{\mathsf{teacher}} & \overbrace{\mathbf{x}_{\mathsf{teacher}}}$$

$$\begin{array}{c} \textbf{But What if} \\ \text{MDP Transition Dynamics} \\ T_{\text{teacher}} \text{ and } T_{\text{student}} \text{ are Very Different}? \end{array}$$

$$\begin{array}{c} \textbf{f} \\ \textbf{f$$

But What if MDP Transition Dynamics T_{teacher} and T_{student} are **Very Different**? $\pi^*_{\text{teacher}}(a|s)$ $\pi^*_{\text{student}}(a|s)$ $T_{\text{teacher}}(\pi^*_{\text{teacher}}(s),$ $T_{\text{student}}(\pi^*_{\text{student}}(s), s)$ S) $R_{\text{teacher}}(\pi^*_{\text{teacher}}(s), s)$ $R_{\text{student}}(\pi^*_{\text{student}}(s), s)$

Continuous Robot Evolution: How?

Robot 1

Robot 2

After this step, state and action space of the two robots are unified!

Now the only difference is transition dynamics

Continuous Robot Evolution Step 2: Kinematic Interpolation

Continuous Robot Evolution Step 2: Kinematic Interpolation

Hardware parameter of the robot at evolution progress α

$$\theta(\alpha) = (1 - \alpha) \cdot \theta_{\text{source}} + \alpha \cdot \theta_{\text{target}}$$

Small evolution progress?

Large evolution progress?

What is the best evolution progression step size?

What is the best evolution progression step size?

Too small: waste RL iterations on too small robot changes

What is the best evolution progression step size?

Too small: waste RL iterations on too small robot changes **Too large**: reward / success rate drop and hurt sample efficiency

What is the best evolution progression step size?

The best evolution step size cannot be predicted beforehand

Sample from a moving window: both small and large evolution progress step sizes

Sample from a moving window: both small and large evolution progress step sizes

Sample from a moving window: both small and large evolution progress step sizes

Sample from a moving window: both small and large evolution progress step sizes

Small step size: maintain sufficient sample efficiency **Large step size**: risk on large evolution to improve adaptation

Proposed: Evolution Reward Shaping

$$r'_t = r_t \cdot \exp(h \cdot \alpha)$$

Put more weight on reward received from robots with larger evolution progress α to improve adaptation towards target robot

α

Proposed: Evolution Reward Shaping

Theoretical results show the relationship between the evolution reward shaping and the optimization objective

Theorem 4.1. Suppose the policy that optimizes the objective in Equation (6) with evolution reward shaping factor of h is the optimal policy $\pi^*_{M_{\varphi}}$ on robot $M_{\varphi} = E(\varphi), \varphi \in$ $[\alpha_k, \alpha_k + \xi]$, i.e.

$$\arg \max_{\pi} \underset{M_{\varphi} = E(\beta)}{\mathbb{E}} \underset{s_{t+1} \sim M_{\beta}(\cdot|s_{t},a_{t})}{\mathbb{E}} \sum_{t} \gamma^{t} r_{t} \exp(h \cdot \beta)$$
$$= \pi_{M_{\varphi}}^{*} = \arg \max_{\pi} \underset{\pi}{\mathbb{E}} \underset{s_{t+1} \sim M_{\varphi}(\cdot|s_{t},a_{t})}{\mathbb{E}} \sum_{t} \gamma^{t} r_{t}$$
(7)

Then when $\xi \to 0$, $\varphi = \alpha_k + \frac{1}{2}\xi + \frac{1}{4}h\xi^2 + o(\xi^2)$.

Related Works (1/2)

To Discover Robots that Generalize Better:

Evolved Virtual Creatures K. Sims, SIGGRAPH 1994

Neural Graph Evolution for Robot Design T. Wang et al., ICLR 2019 Self-Assembling Agents D. Pathak et al., NeurIPS, 2019

Embodied Intelligence via Learning and Evolution A. Gupta et al., Nature Communications 2021

Ours: Transfer the Policy from a Source Robot to a Predetermined Target Robot

Related Works (2/2)

To Build Controllers that Generalize Across Robots:

Ours: Assume Given Good Controller for Some Robot, Generate Controller for Some New Robot; **Does Not Need to Generalize** Across Robots

Experiments: MuJoCo Gym

Ant-length-mass

Humanoid-length-mass

Ant-leg-emerge

Experiments: MuJoCo Gym

47

Experiments: Hand Manipulation Suite

Experiments: Hand Manipulation Suite, Relocate Task

Experiments: Hand Manipulation Suite, Relocate Task

Experiments: Hand Manipulation Suite

	Dense Reward	Sparse Reward
From Scratch	-	∞
Direct Finetune	7.6K	∞
DAPG	5.4K	∞
Ours	_	2.6K

Door Task

Hammer Task		
Ours	-	18.1K
DAPG	23.3K	∞
Direct Finetune	43.5K	∞
From Scratch	>100K	∞
	Dense Reward	Sparse Reward

	Dense Reward	Sparse Reward
From Scratch	>100K	∞
Direct Finetune	>100K	∞
DAPG	17.1K	∞
Ours	-	11.9K

Relocate Task

Number of epochs needed to reach 90% success rate

Experiments: Hand Manipulation Suite

	Door Task		
Ours	-	2.6K	
DAPG	5.4K	∞	
Direct Finetune	7.6K	∞	
From Scratch	-	∞	
	Dense Reward	Sparse Reward	

	Dense Reward	Sparse Reward
From Scratch	>100K	∞
Direct Finetune	43.5K	∞
DAPG	23.3K	∞
Ours	-	18.1K
Hammer Task		

	Dense Reward	Sparse Reward
From Scratch	>100K	∞
Direct Finetune	>100K	∞
DAPG	17.1K	∞
Ours	-	11.9K
Dala sata Taala		

Relocate Task

Number of epochs needed to reach 90% success rate

REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy Transfer

Thank you

