
Matching Learned Causal Effects of Neural

Networks with Domain Priors

Sai Srinivas Kancheti∗ Abbavaram Gowtham Reddy∗

Vineeth N Balasubramanian Amit Sharma



Introduction

• We consider causal domain priors in the form of (parametric)

functional relationships between inputs and outputs

• Domain priors often come as a result of RCTs or from domain

knowledge

• We consider 3 kinds of domain priors motivated from 3 kinds of

causal effects defined by Pearl1:

• Average Controlled Direct Effect (ACDE)

• Average Natural Direct Effect (ANDE)

• Average Total Causal Effect (ATCE)

• If we know such priors, we incorporate them in neural networks

(NNs) by regularization.

1Judea Pearl. “Direct and indirect effects”. In: Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence. 2001.
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Notations & Background

• We view a feed forward NN f as a structural causal model

• Neurons represent variables and edges represent causal relationships

among variables.

• W.l.o.g, we marginalize over hidden layers of a neuron and consider

only input and output layers.

• Let G be the causal graph of the SCM of f in which

• T is the treatment variable

• Ŷ is the outcome variable

• Z is the set of variable that lie in a directed path from T to Ŷ (in

the NN causal graph).

• W is the set of remaining variables

• We denote Ŷ |do(T = t) as Ŷt
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Different Causal Effects

• A trained NN learns some causal relationships between the inputs

and the outputs

• Following Pearl2, we define various causal effects of the feature T on

Ŷ learned by NN SCM

• First we define the ACDE in NNs and show its identifiability

2Judea Pearl. “Direct and indirect effects”. In: Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence. 2001.
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Different Causal Effects

Average Controlled Direct Effect (ACDE) in NNs

Average Controlled Direct Effect (NN-ACDE ) measures the average causal

effect of T on Ŷ when all parents of Ŷ except T (Z ,W in this case) are

intervened to pre-defined control values (i.e., do(Z = z ,W = w)).

NN-ACDE Ŷ
t (z ,w) := EU [Ŷt,z,w ]− EU [Ŷt∗,z,w ] = Ŷt,z,w − Ŷt∗,z,w .

• Priors are expressed only in terms of T and Y

• We propose a modified definition for NN-ACDE that marginalizes

over {Z ,W }.

Our version of NN-ACDE is hence:

NN-ACDE Ŷ
t := EZ ,W ,U [Ŷt,Z ,W ]− EZ ,W ,U [Ŷt∗,Z ,W ]

Similarly, we define NN-ANDE and NN-ATCE in NNs.
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Identifying Causal Effects

Identifying ACDE in NNs

ACDE Ŷ
t = EZ ,W ,U [Ŷt,Z ,W ]− EZ ,W ,U [Ŷt∗,Z ,W ] (Definition)

= EZ ,W [Ŷt,Z ,W ]− EZ ,W [Ŷt∗,Z ,W ] (NN is deterministic)

= EZ ,W [Ŷ |t,Z ,W ]− EZ ,W [Ŷ |t∗,Z ,W ] (Unconfoundedness)

• The ACDE can be computed empirically by sampling Z ,W

(covariates other than T ) from training data, and computing Ŷ via

forward pass

• Similarly, we prove the identifiability of NN-ANDE and NN-ATCE

in NNs
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Regularizing Causal Effects

• We would like to match the causal effects learned by the NN to the

true causal effects which are provided to us in the form of causal

domain priors

• We enforce this by gradient matching

• The gradient of the provided causal domain prior is matched with

the gradient of the NN’s learned causal effect
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Regularizing Causal Effects

Regularizing ACDE in NNs

∂ACDE Ŷ
t

∂t
=

∂[EZ ,W [Ŷ |t,Z ,W ]− EZ ,W [Ŷ |t∗,Z ,W ]]

∂t

=
∂[EZ ,W [Ŷ |t,Z ,W ]]

∂t
(t∗ is a constant)

= EZ ,W

[
∂[Ŷ (t,Z ,W )]

∂t

]
(exchange E and

∂

∂t
)

Regularizer

R(f ,G ,M) =
1

N

N∑
j=1

max{0, ∥∇j f ⊙M − δG j∥1 − ϵ}

Similarly, we regularize ANDE and ATCE in NNs
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Results

ACDE plots of AutoMPG dataset

The blue curve closely matches the domain prior (red curve), which

indicates that CREDO (the causally regularized NN) learns the desired

causal effects
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Thank You!


