Robust Training of Neural Networks Using Scale Invariant Architectures

Zhiyuan Li¹, Srinadh Bhojanapali², Manzil Zaheer³, Sashank J. Reddi², Sanjiv Kumar²

¹ Princeton University, ² Google Research New York, ³ Google Deepmind New York

ICML, 2022

- Training Transformers is difficult and often unstable.
- can be trained by SGD.

• What complicates Transformers training?

Background

Training Transformer requires adaptive methods (e.g., ADAM), unlike ResNets, which

What Complicates Transformer Training?

More likely to get extremely large gradient

[Zhang et al., 19]: Heavy-tailed gradient noise from both architecture (Attention) and dataset (text).

- However, heavy-tailed noise may not be the entire answer.
- [You et al., 20, Chen et al., 21]: ADAM consistently outperforms SGD even in large**batch** or **full-batch** setting in NLP, while the gap is much smaller in vision.

Question: What are other possible issues? Can non-adaptive methods like SGD enjoy fast and robust convergence?

 \implies Clipping and adaptive LR improves convergence by avoiding huge updates.

k-homogeneity in Architecture

Our Recipe

- 1. Design Scale Invariant Architecture
- 2. SGD + WD
- 3. A Novel Clipping Rule

Experiments

• Train Scale Invariant BERT with SGD

- **Definition:** f(x) is k-homogeneous $\iff f(cx) = c^k f(x), \forall c > 0$ (x=param, f(x)= output)
- Lemma: f is k-homo $\iff \nabla^l f$ is (k l)-homo.
- **Descent Lemma:** Learning Rate(LR) < $2/smoothness \implies$ GD decreases loss L
- **Observation 1:** $k \ge 3 \implies$ model f(x) has unbounded smoothness, so does loss L \implies success of LR (for GD) is sensitive to the initialization

• **Observation 1:** $k \ge 3 \implies$ model f(x) has unbounded smoothness, so does loss L

- **Ex 1**: \tilde{L} : $\mathbb{R} \to \mathbb{R}$, convex with bounded smoothness, minimizer $X^* > 0$.
 - There is a sufficiently small LR, that GD on \tilde{L} converges for all init
 - Let $X = x_1 \dots x_{2k}, k \ge 2, L(x_1, \dots, x_{2k}) = \tilde{L}(X) \Longrightarrow L$ has unbounded smoothness
 - GD on L diverges if LR $\geq \frac{2(X(0))^{\frac{1}{k}-1}}{|\nabla \tilde{L}(X(0))|}$, $x_i(0)$ are the same and $X(0) \geq X^*$.

- \implies success of LR η (for GD) is sensitive to the initialization
 - 1d logistic regression with non-separable data

- Ex 2: low-rank matrix factorization, L
 - For simplicity, assume r = 1, d = 2,

Observation 2: Even fine-tuned LR cannot learn from unbalanced initialization efficiently.

$$L(A, B) = \frac{1}{2} ||AB^{\top} - Y||_{F}^{2}, A, B \in \mathbb{R}^{d \times r} \text{ and } d$$

and $A(0) = \begin{pmatrix} \alpha \\ 0 \end{pmatrix}, B(0) = \begin{pmatrix} \alpha^{-1} \\ 0 \end{pmatrix}, Y = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$
$$\overset{\alpha = 10.0}{\overset{\alpha = 100.0}{\overset{\alpha = 100.0}{\overset{\alpha = 100.0}{\overset{\alpha = 100.0}{\overset{\alpha = 100.0}{\overset{\alpha = 100.0}{\overset{\alpha = 100}{\overset{\alpha = 100}{\overset{\alpha = 100}{\overset{\alpha = 100}{\overset{\alpha = 10}{\overset{\alpha = 10}{$$

ADAM solves the unbalanced weight issue, but costs 3x memory storing parameters.

Can non-adaptive methods like SGD enjoy fast and robust convergence?

k-homogeneity in Architecture

Our Recipe

- 1. Design Scale Invariant Architecture
- 2. SGD + WD (no momentum, no warm-up)
- 3. A Novel Clipping Rule: Relative Global Clipping

Experiments

Train Scale Invariant BERT with SGD

Outline

k-homogeneity in Architecture

Our Recipe

- Design Scale Invariant Architecture \implies Increase training stability 1.
- 2. SGD + WD (no momentum, no warm-up)
- 3. A Novel Clipping Rule: Relative Global Clipping

Experiments

Train Scale Invariant BERT with SGD

Outline

Ingredient 1: Scale Invariant Architecture

- Scale Invariant \iff 0-homo $\iff f(x) =$
- Euler's Theorem: L is k-homo \Longrightarrow
- How scale invariance removes training instability:
- Too large LR \implies Loss \uparrow , Norm $\uparrow \implies$ Hessian $\downarrow \implies$ Optimization resumes!

$$= f(cx), \forall c > 0$$

• Thus 0-homo model output $f \Longrightarrow$ 0-homo loss function $L \Longrightarrow$ (-2)-homo Hessian $\nabla^2 L$

$$\langle x, \nabla L(x) \rangle = kL(x)$$

• L is scale invariant (0-homo) $\implies \langle x, \nabla L(x) \rangle = 0 \implies ||x - \eta \nabla L(x)|| \ge ||x||$

Ingredient 1: Scale Invariant Architecture

- VGG and ResNets are (nearly) scale invariant, with BatchNorm or other normalization. But Transformer is not, even with layernorm. (Attention!!)
- We designed a scale invariant variant of BERT SIBERT.
- **Key features** (to make encoder scale invariant):
 - **1.** Scale Invariant Attention Score: $\mathbf{p} = \operatorname{sofmax}(\mathbf{q}) \rightarrow p_i = \max(q_i, 0) / \sum_i \max(q_i, 0)$
 - **2.** Architecture Change(*PostNorm* \rightarrow *PreNorm*)
 - **3.** Activation Change (GeLU \rightarrow ReLU)

Existing Analysis for SGD on Scale Invariant Loss

- Scale Invariance $\iff L(cx) \equiv L(x), \forall c > 0$ • Let $\overline{x} = \frac{x}{\|x\|}$, $\rho = \sup_{x} \lambda_{\max}(\nabla^2 L(\overline{x}))$.
- Goal: Find parameter x direction \overline{x} with small gradient.
- But $O(\cdot)$ hides poly dependence on scale initialization...

• Thm[Arora, L & Lyu, 19]: For GD w. any fixed LR and init, $\min_{\substack{0 \le t \le T \\ 0 \le t \le T}} \|\nabla L(\overline{x}(t))\|^2 \le O(T^{-1})$ For SGD w. any fixed LR and init, $\min_{\substack{0 \le t \le T \\ 0 \le t \le T}} \|\nabla L(\overline{x}(t))\|^2 \le \tilde{O}(T^{-0.5})$ $0 \le t \le T$

• Too large norm \implies small 'effective LR', $\frac{\eta}{|x|^2} \implies$ Optimization stucks!

k-homogeneity in Architecture

Our Recipe

- 1. Design Scale Invariant Architecture \implies Increase Training stability
- 2. SGD + WD (no momentum, no warm-up) \implies Increase training efficiency under rescaling of loss and initialization
- 3. A Novel Clipping Rule: Relative Global Clipping

Experiments

Train Scale Invariant BERT with SGD

Outline

Ingredient 2: SGD + WD

• Use Weight Decay to shrink weight per step and accelerate when stucking x(t+1) = (1 - 1)

Or increase LR multiplicatively per step.

-
$$\eta \lambda x(t) - \eta \nabla L(x(t))$$

Weight Decay(WD)
, like $\eta_t = \eta \cdot 1.001^t$.

• Two methods are mathematically equivalent with $\eta_t = \eta \cdot (1 - \eta \lambda)^{-2t}$. [L&Arora,21]

Convergence Results for GD + WD on Scale Invariant Loss

- x(t+1) = (1 n)GD+WD: • Thm(GD+WD): For $\eta\lambda \leq 0.5$, $T_0 \lesssim \frac{1}{2\eta\lambda}$ min $\|\nabla L$ $t = 0, ..., T_0$
- Proof sketch:

 - 2. Descent Lemma + standard analysis:

 $L(x(t)) - L(x(t+1)) \ge 1$

$$\begin{split} \eta \lambda &|x(t) - \eta \nabla L(x(t)) \\ \frac{1}{2} \left| \ln \frac{\|x(0)\|_2^2}{\eta} \right|, \text{ we have} \\ \lambda &|x(\overline{x}(t))\|_2^2 \leq O(\lambda\eta). \quad \min_t \|\nabla L(\overline{x}(t))\|^2 = O(T^{-1}) \end{split}$$

1. $\|\overline{x}(t)\|_2 \to \Theta(\sqrt{\rho\eta})$. (balance of 2 forces: GD \to norm \uparrow , WD \to norm \downarrow)

$$\eta \left(1 - \frac{2\rho\eta}{\|x(t)\|_2^2} \right) \|\nabla L(x(t))\|_2^2.$$

Convergence Results for SGD +WD

x(t+1) = (1 - 1)• SGD+WD: • Assumption: $\underline{\sigma}^2 \leq \mathbb{E}_{\gamma} \| \nabla L_{\gamma}(\overline{x}) \|^2 \leq \overline{\sigma}^2$ • Thm(SGD+WD): For $\lambda \eta \lesssim \frac{\sigma^4}{M^4} (\ln \frac{T}{\delta^2})$ $\forall T_1 \leq t \leq T-1,$ where $T_1 = \frac{1}{\eta\lambda}O\left(\ln|\eta\lambda| + \frac{\ln\eta}{\|x(0)\|}\right)$ $\frac{1}{T - T_1} \sum_{t=T_1}^{T-1} \|\nabla L(\bar{x}(t))\|_2^2$

$$-\eta\lambda x(t) - \eta \nabla L_{\gamma_t}(x(t)) \quad \gamma_t - \text{data/batch at step t}$$

$$)^{-1}, \text{ where } M = \sup_{x,\gamma} \|\nabla L_{\gamma}(\overline{x})\|, \text{ w.p. } 1 - 5\delta_{1}$$
$$\frac{\sigma^{2}}{2} \leq \frac{2\lambda}{\eta} \|x(t)\|_{2}^{4} \leq 4\overline{\sigma}^{2}$$
$$)\|_{2}^{2}\Big|\Big), \text{ and } \min_{t} \|\nabla L(\overline{x}(t))\|^{2} = O(T^{-0.5})$$
$$\leq \tilde{O}\left(\frac{1}{(T-T_{1})\sqrt{\eta\lambda}} + \sqrt{\eta\lambda}\right)$$

k-homogeneity in Architecture

Our Recipe

- 1. Design Scale Invariant Architecture \implies Increase Training stability
- 2. SGD + WD (no momentum, no warm-up) \implies Increase training efficiency under rescaling of loss and initialization

Experiments

Train Scale Invariant BERT with SGD

Outline

3. Relative Global Clipping \implies Reduce spikes in training loss and param norm

Ingredient 3: Global Relative Clipping

- Analysis of SGD+WD only works for sufficiently small $\eta\lambda$.
- Gradient norm is heavy-tailed \implies norm and loss oscillates.
- **Goal:** clip only when necessary so that stochastic gradient is almost unbiased. \implies Clipping should not be triggered when $\|\nabla L_{\gamma}(\overline{x})\| \equiv \sigma$ for all x, γ

$$\implies \|x(t)\|_2^2 \to \sqrt{\frac{2\eta}{\lambda(2-\eta\lambda)}}\sigma \text{, and } \|\nabla L_{\gamma}(x(t))\|_2 = \sqrt{\frac{\lambda(2-\eta\lambda)}{\eta}} \|x(t)\|_2.$$

• **Thm**(Informal): Global Relative Clipping \implies better norm convergence.

Global Relative Clipping: Clip grad norm to $\sqrt{\frac{2C\lambda}{\eta}} ||x(t)||_2$. (C>1, Default =2)

k-homogeneity in Architecture

Our Recipe

- 1. Design Scale Invariant Architecture
- 2. SGD + WD
- 3. A Novel Clipping Rule

Experiments

• Train Scale Invariant BERT with SGD

Outline

Performance of SIBERT

- **Dataset**: Wiki+Books. **Model**: Base size BERT.
- We use Global Relative Clipping (C=2) and WD for SGD on SIBERT.

Downstream Task

		MNLI Acc	SQuAD1 F1	SQuAD2 F1
Base	BERT + ADAM	84.4	90.3	78.8
	+ 2x training	82.0 83.3	89.5 90.3	70.8 80.0

larger is better

Robustness of SIBERT to Scalings

SGD+WD performs consistently for different initialization scales.

Clipping removes spikes in train curve and yields better convergence. (occur for only ~1% steps)

Without WD, the performance of SGD can be significantly affected by scaling of initialization.

 We hypothesis the training instability of Transformers is related to homogeneity structure in the network.

- Our recipe for fast and robust training via non-adaptive methods
 - 1. Design scale invariant architecture (BERT \rightarrow SIBERT)
 - 2. SGD + WD
 - 3. Relative Global Clipping

Thank You !