Batched Dueling Bandits

Arpit Agarwal ${ }^{1}$ Rohan Ghuge ${ }^{2}$ Viswanath Nagarajan ${ }^{2}$

${ }^{1}$ Data Science Institute, Columbia University.
${ }^{2}$ Department of Industrial and Operations Engineering, University of Michigan.
July 18, 2022

Motivation I: Web-Search Ranking

https:///www.expedia.com) ... : Maryland :
Top Hotels in Baltimore, MD from $\$ 76$ - Expedia
Check Baltimore (and vicinity) hotel prices • Canopy by Hilton Baltimore Harbor Point DoubleTree Hotel Baltimore - BWI Airport - Baltimore Marriott Waterfront.

Accommodation: 673 hotels
Highast Price: \$182

Number of reviews: 9622
https:/l/www.kayak.com) ...) Hotels in Maryland i
16 Best Hotels in Baltimore. Hotels from \$59/night - KAYAK Baltimore hotels near The Baltimore Convention Center : La Quinta Inn \& Suites by Wyndham Baltimore Downtown - Baltimore - Bedroom. La Quinta Inn \& Suiles by ...
Average price (weekend night): \$200 Low season: May
Average price (weeknight): \$175 High season: March
hitps:/ftravel.usnews.com, Hotels, USA :
25 Best Hotels in Baltimore, MD - US News Travel
Four Seasons Hotel Baltimore Sagamore Pendry Baltimore Kimpton Hotel Monaco Baltimore Inner Harbor - Royal Sonesta Harbor Court Baltimore . Hotel Indigo ...
https://baltimore.org, Plan :
Baltimore Hotels \& Lodging | Visit Baltimore
Looking for a quick getaway? Book a staycation at a Baltimore hotel in the heart of downtown or try one of the city's many charming neighborhood hotels. And,
https://www.travelocity.com) ... , Maryland \vdots
Baltimore Hotels from \$72 - Hotel Deals - Travelocity
Most frequently booked Baltimore hotels - Renaissance Baltimore Harborplace Hotel Hyatt Regency Baltimore Inner Harbor - The Westin Baltimore Washington Airport ...

https://www.trivago.com , USA, Maryland :
Baltimore Hotels | Find \& compare great deals on trivago Hotels in Baltimore, USA - Sagamore Pendry Baltimore • Four Seasons Hotel Baltimore - Hyatt Regency Battimore Inner Harbor • Holiday Inn Express \& Suites Baltimore ...
https://www.choicehotels.com , Baltimore, MD, US i
Hotels in Baltimore, MD - Choice Hotels
24 hotels near Baltimore, Maryland ; Sleep Inn \& Suites Downtown Inner Harbor - 0.1 mi. 1483 ; The Inn at Henderson's Whart, Ascend Hotel Collection - 1.31 mi.

\square

Motivation I: Web-Search Ranking

https:/www.expedia.com) ... , Maryland

Top Hotels in Baltimore, MD from \$76 - Expedia
Check Ballimore (and vicinty) hotel prices • Canopy by Hilton Baltimore Harbor Point DoubleTree Hotel Baltimore - BWI Airport - Baltimore Marriot Waterrront.
Accommodation: 673 hotels Highest Price: $\$ 182$
Number of reviews: 9622
htps://www.kayak.com , ... , Hotels in Maryland :
16 Best Hotels in Baltimore. Hotels from \$59/night - KAYAK Baltimore hotels near The Battimore Convention Center : La Quinta Inn \& Suites by Wyndham Baltimore Downtown - Baltimore - Bedroom, La Quinta inn \& Suites by ...
Average pice (weekend night) $\$ 200 \quad$ Low season: May
Average price (weoknight): \$175 High season: March
https:/travel.usnews.com , Hotels, USA
25 Best Hotels in Baltimore, MD - US News Travel Four Seasons Hotel Baltimore - Sagamore Pendry Baltimore - Kimpton Hotel Monaco Batimore Inner Harbor - Royal Sonesta Harbor Court Batlimore - Hotel Indigo .-

https:/fbaltimore.org , Plan :

Baltimore Hotels \& Lodging | Visit Baltimore
Looking for a quick getaway? Bock a staycation at a Battimore hotel in the heart ot downtown or try one of the city's many charming neighborhood hotels. And,
https://www.travelocity.com) ... Maryland I
Baltimore Hotels from \$72 - Hotel Deals - Travelocity
Most frequently booked Baltimore hotels - Renaissance Baltimore Harborplace Hotel Hyatt Regency Baltimore Inner Harbor - The Westin Baltimore Washington Airport .

htlps.//www.trivago.com > USA , Maryland

Baltimore Hotels | Find \& compare great deals on trivago Hotels in Baltimore, USA - Sagamore Pendry Baltimore ' Four Seasons Hotel Baltimore - Hyatt Regency Eatimore Inner Harbor • Holiday Inn Express \& Sulies Baltimore ...

https://www.choicehotels. com , Baltimore, MD, US
Hotels in Baltimore, MD - Choice Hotels

Can extract pairwise comparisons
(Radlinski et al., 2008)

24 hotels near Baltimore, Maryland ; Sleep Inn \& Suites Downtown Inner Harbor - 0.14

mi. 1463 : The Inn at Henderson's Wharf, Ascend Hotel Collection $\cdot \mathbf{1 . 3 1} \mathrm{mL}$.

Motivation I: Web-Search Ranking

ntps:illwww.expedia.com , ... Maryland

Top Hotels in Baltimore, MD from $\$ 76$ - Expedia
Check Baltimore (and vicinity) hotel prices - Canopy by Hilton Battimore Harbor Point DoubleTree Hotel Baltimore - BWI Airport - Baltimore Marriott Waterfront.

Accommodation: 673 hotels
Highest Price: $\$ 182$
Number of reviews: 9622
ntps:i/www.kayak.com , ...) Hotels in Maryland
16 Best Hotels in Baltimore. Hotels from \$59/night - KAYAK Baltimore hotels near The Baltimore Convention Center: La Quinta Inn \& Suites by Wyndham Baltimore Downtown - Baltimore - Bedroom. La Quinta Inn 8 Suites by ... Average price (weekend nighty: $\$ 200 \quad$ Low season: May Average price (weeknight): $\$ 175 \quad$ High season: March
nttps ijitravel. usnews.com , Hotels) USA
25 Best Hotels in Baltimore, MD - US News Travel Four Seasons Hotel Baltimore - Sagamoro Pendry Baltimoro - Kimpton Hotel Monaco Ballimore Inner Harbor : Royal Sonesta Harbor Court Baltimore : Hotel Indigo ...
hitpsi/ballimore.org, Plan i
Baltimore Hotels \& Lodging | Visit Baltimore
Looking for a quick getaway? Book a staycation at a Baltimore hotel in the heart of downtown or try one of the city's many charming neighborhood hotels. And,
https:/i/www.travelocity.com , ... Maryland E
Baltimore Hotels from $\$ 72$ - Hotel Deals - Travelocity
Most frequently booked Baltimore hotels - Renaissance Baltimore Harborplace Hotel Hyall Regency Baltimore Inner Harbor - The Westin Baltimore Washington Airport.

Ittps:/iwww.trivago.com, USA, Maryland ;
Baltimore Hotels | Find \& compare great deals on trivago Hotels in Baltimore, USA . Sagamore Pendry Baltimore - Four Seasons Hotel Baltimore - Hyatt Regency Baltimore Inner Hartor • Holiday Inn Express \& Sultes Ballimore ...
ntips:/iwww.choicehotels. com ; Ballimore, MD, US
Hotels in Baltimore, MD - Choice Hotels
24 hotels noar Baltimore, Maryland ; Sleep Inn \& Suites Downtown Inner Harbor - 0.14
mi. 1463 ; The Inn at Henderson's Whart, Ascend Hotel Collection - 1.31 ml .

Motivation I: Web-Search Ranking

https://www.expedia.com) ..., Maryland ;
Top Hotels in Baltimore, MD from $\$ 76$ - Expedia
Check Baltimore (and vicinity) hotel prices - Canopy by Hilton Battimore Harbor Point DoubleTree Hotel Baltimore - BWI Airport - Baltimore Marriott Waterfront.
Accommodation: 673 hotels Highest Price: $\$ 182$
Number of reviews: 9622
https://www.kayak.com) ...) Hotels in Maryland
16 Best Hotels in Baltimore. Hotels from \$59/night - KAYAK Baltimore hotels near The Baltimore Convention Center : La Quirta inn \& Sultes by Wyndham Baltimore Downtown - Baltimore - Bedroom. La Quinta Inn \& Suites by -..
Average price (weekend night) $\$ 200 \quad$ Low season: May
Average price (weoknight): \$175 High season: March
https:/ltravel.usnews.com ; Hotels , USA :

Click!

25 Best Hotels in Baltimore, MD - US News Trave। Four Seasons Hotel Baltimore - Sagamore Pendry Baltimore - Kimpton HoterBaltemore Inner Harbor - Royal Sonesta Harbor Court Balimore - Hotel Indigo ...

https:/baltmore.arg, Plan i

Baltimore Hotels \& Lodging | Visit Baltimore
Looking for a quick getaway? Book a staycation at a Baltimore hotel in the heart of downtown or try one of the city's many charrning neighborhood hotels. And, ...
https://www.travelocity.com , ...) Maryland i
Baltimore Hotels from \$72-Hotel Deals - Travelocity Most frequenily boeked Baitimore hotels - Renaissance Baltimore Harborplace Hotel - Hyalt Regency Baltimore Inner Harbor - The Westin Baitimore Washington Airport.

https://www.trivago.com , USA , Maryland \ddagger

Baltimore Hotels | Find \& compare great deals on trivago Hotels in Baltimore, USA - Sagamore Pendry Baltimore Four Seasons Hotel Baltimore - Hyatt Regency Battimore inner Harbor. Holiday Inn Expross \& Suites Baltemoro :...
htips://www.choicehotels.com , Baltimore, MD, US
Hotels in Baltimore, MD - Choice Hotels
24 hotels near Baltimore, Maryland ; Sleep Inn \& Suites Downtown Inner Harbor : 0.14
mil. 1463 ; The Imn at Henderson's Wharf, Ascend Hotel Collection - 1.31 mi .

Motivation II：Movie Recommendation

Motivation II: Movie Recommendation

Simultaneously satisfy users and determine best movie

Dueling Bandits

- K arms

Dueling Bandits

- K arms
- time horizon T

Dueling Bandits

- K arms
- time horizon T
- in trial $t \in[T]$:
select pair $\left(i_{t}, j_{t}\right)$

Dueling Bandits

- K arms
- time horizon T
- in trial $t \in[T]$:
select pair $\left(i_{t}, j_{t}\right)$ observe noisy comparison

Dueling Bandits

- K arms
- time horizon T
- in trial $t \in[T]$:
select pair $\left(i_{t}, j_{t}\right)$
observe noisy comparison
- noisy comparison:

$$
\begin{aligned}
& \operatorname{Pr}(i \text { beats } j)=P_{i, j} \\
& \text { comparisons are independent }
\end{aligned}
$$

Dueling Bandits

- K arms
- time horizon T
- in trial $t \in[T]$:
select pair $\left(i_{t}, j_{t}\right)$
observe noisy comparison
- noisy comparison:

$$
\begin{aligned}
& \operatorname{Pr}(i \text { beats } j)=P_{i, j} \\
& \text { comparisons are independent } \\
& P_{i, j}=\frac{1}{2}+\epsilon(i, j) \text { : measure of distinguishability }
\end{aligned}
$$

Dueling Bandits

- K arms
- time horizon T
- in trial $t \in[T]$:
select pair $\left(i_{t}, j_{t}\right)$
observe noisy comparison
- noisy comparison:

$$
\operatorname{Pr}(i \text { beats } j)=P_{i, j}
$$

comparisons are independent

$$
P_{i, j}=\frac{1}{2}+\epsilon(i, j): \text { measure of distinguishability }
$$

- assume $i^{*}=$ best arm; $\epsilon\left(i^{*}, i\right) \geq 0$ for all i

Dueling Bandits

- K arms
- time horizon T
- in trial $t \in[T]$:
select pair $\left(i_{t}, j_{t}\right)$
observe noisy comparison
- noisy comparison:

$$
\operatorname{Pr}(i \text { beats } j)=P_{i, j}
$$

comparisons are independent

$$
P_{i, j}=\frac{1}{2}+\epsilon(i, j): \text { measure of distinguishability }
$$

- assume $i^{*}=$ best arm; $\epsilon\left(i^{*}, i\right) \geq 0$ for all i

Goal: perform noisy comparisons that have low regret wrt i^{*}

Regret: Motivation

want to maximize user satisfaction

Regret: Motivation

Regret: Motivation

Regret: Motivation

Regret: Motivation

Regret: Motivation

may help in learning; users may be unsatisfied

Regret: Motivation

Regret: Motivation

Regret: Motivation

Regret: Motivation

Regret: Motivation

Regret: Motivation

simultaneously learn and keep users satisfied

Regret

- let $i^{*}=$ best arm

Regret

- let $i^{*}=$ best arm
- in trial t :
- $\left(i_{t}, j_{t}\right)$ selected

Regret

- let $i^{*}=$ best arm
- in trial t :
- $\left(i_{t}, j_{t}\right)$ selected
$-r(t)=\epsilon_{i_{t}}+\epsilon_{j_{t}}$

Regret

- let $i^{*}=$ best arm
- in trial t :
- $\left(i_{t}, j_{t}\right)$ selected
$-r(t)=\epsilon_{i_{t}}+\epsilon_{j_{t}}$: measures sub-optimality against i^{*} notation: $\epsilon_{j}=\epsilon\left(i^{*}, j\right)$

Regret

- let $i^{*}=$ best arm
- in trial t :
- $\left(i_{t}, j_{t}\right)$ selected
$-r(t)=\epsilon_{i_{t}}+\epsilon_{j_{t}}$: measures sub-optimality against i^{*} notation: $\epsilon_{j}=\epsilon\left(i^{*}, j\right)$
- total regret $R(T)=\sum_{t} r(t)$

Regret

- let $i^{*}=$ best arm
- in trial t :
- $\left(i_{t}, j_{t}\right)$ selected
- $r(t)=\epsilon_{i_{t}}+\epsilon_{j_{t}}$: measures sub-optimality against i^{*} notation: $\epsilon_{j}=\epsilon\left(i^{*}, j\right)$
- total regret $R(T)=\sum_{t} r(t)$

Perform noisy comparisons with low regret wrt i^{*}

Full Adaptivity

Full Adaptivity

- policy updates one at a time

Full Adaptivity

- policy updates one at a time
- can use prior observations to make selection

Full Adaptivity

- policy updates one at a time
- can use prior observations to make selection
- may be infeasible in large systems

Full Adaptivity

- policy updates one at a time
- can use prior observations to make selection
- may be infeasible in large systems
- requires large computational resources

Limited Adaptivity: Batching

Limited Adaptivity: Batching

- learner makes multiple comparisons in parallel

Limited Adaptivity: Batching

- learner makes multiple comparisons in parallel
- receives all feedback simultaneously

Limited Adaptivity: Batching

- learner makes multiple comparisons in parallel
- receives all feedback simultaneously
- adaptively selects next batch

Limited Adaptivity: Batching

- learner makes multiple comparisons in parallel
- receives all feedback simultaneously
- adaptively selects next batch

Given number of batches B, perform B batches of noisy comparisons with low regret wrt i^{*}

Main Results: Informal

- Trade-off b/w \# batches and regret under two well-studied pairwise comparison models:
(1) $\mathrm{SST}+\mathrm{STI}$
(2) Condorcet

Main Results: Informal

- Trade-off b/w \# batches and regret under two well-studied pairwise comparison models:
(1) $\mathrm{SST}+\mathrm{STI}$
(2) Condorcet
- $O\left(B T^{1 / B} \log (T)\right)$ regret in $O(B)$ rounds
- $O\left(\log ^{2}(T)\right)$ regret in $O(\log (T))$ rounds

Ignoring dependence on K

Main Results: Informal

- Trade-off b/w \# batches and regret under two well-studied pairwise comparison models:
(1) $\mathrm{SST}+\mathrm{STI}$
(2) Condorcet
- $O\left(B T^{1 / B} \log (T)\right)$ regret in $O(B)$ rounds
- $O\left(\log ^{2}(T)\right)$ regret in $O(\log (T))$ rounds

Ignoring dependence on K

- Lower bound: $\Omega\left(T^{1 / B}\right)$ in B rounds

Pairwise Comparison Models

- $\epsilon(i, j)=P_{i, j}-1 / 2$

Pairwise Comparison Models

- $\epsilon(i, j)=P_{i, j}-1 / 2$
- Condorcet: $\exists i^{*}$ such that $\epsilon\left(i^{*}, i\right) \geq 0$ for $i \neq i^{*}$

Pairwise Comparison Models

- $\epsilon(i, j)=P_{i, j}-1 / 2$
- Condorcet: $\exists i^{*}$ such that $\epsilon\left(i^{*}, i\right) \geq 0$ for $i \neq i^{*}$
- there exists a best arm

Pairwise Comparison Models

- $\epsilon(i, j)=P_{i, j}-1 / 2$
- Condorcet: $\exists i^{*}$ such that $\epsilon\left(i^{*}, i\right) \geq 0$ for $i \neq i^{*}$
- there exists a best arm
- SST + STI: \exists ordering \succ such that for $i \succ j \succ k$:

$$
-\epsilon(i, k) \geq \max \{\epsilon(i, j), \epsilon(j, k)\} \text { (Strong Stoch. Transitivity) }
$$

$-\epsilon(i, k) \leq \epsilon(i, j)+\epsilon(j, k)$ (Stoch. Triangle Inequality)

Pairwise Comparison Models

- $\epsilon(i, j)=P_{i, j}-1 / 2$
- Condorcet: $\exists i^{*}$ such that $\epsilon\left(i^{*}, i\right) \geq 0$ for $i \neq i^{*}$
- there exists a best arm
- SST + STI: \exists ordering \succ such that for $i \succ j \succ k$:

$$
\begin{aligned}
& -\epsilon(i, k) \geq \max \{\epsilon(i, j), \epsilon(j, k)\} \text { (Strong Stoch. Transitivity) } \\
& -\epsilon(i, k) \leq \epsilon(i, j)+\epsilon(j, k) \text { (Stoch. Triangle Inequality) }
\end{aligned}
$$

- Condorcet setting is more general

Pairwise Comparison Models

- $\epsilon(i, j)=P_{i, j}-1 / 2$
- Condorcet: $\exists i^{*}$ such that $\epsilon\left(i^{*}, i\right) \geq 0$ for $i \neq i^{*}$
- there exists a best arm
- SST + STI: \exists ordering \succ such that for $i \succ j \succ k$:

$$
\begin{aligned}
& -\epsilon(i, k) \geq \max \{\epsilon(i, j), \epsilon(j, k)\} \text { (Strong Stoch. Transitivity) } \\
& -\epsilon(i, k) \leq \epsilon(i, j)+\epsilon(j, k) \text { (Stoch. Triangle Inequality) }
\end{aligned}
$$

- Condorcet setting is more general

- Extensive amount of work on sequential algs: Yue et al. (2012), Yue and Joachims (2011), Zoghi et al. (2014), Komiyama et al. (2015)

Main Results

Theorem 1

There is an algorithm for batched dueling bandits that uses at most B rounds, and if the instance admits a Condorcet winner, the expected regret is bounded by

$$
\mathbb{E}[R(T)] \leq 3 K T^{1 / B} \log \left(6 T K^{2} B\right) \sum_{j: \epsilon_{j}>0} \frac{1}{\epsilon_{j}}
$$

Main Results

Theorem 1

There is an algorithm for batched dueling bandits that uses at most B rounds, and if the instance admits a Condorcet winner, the expected regret is bounded by

$$
\mathbb{E}[R(T)] \leq 3 K T^{1 / B} \log \left(6 T K^{2} B\right) \sum_{j: \epsilon_{j}>0} \frac{1}{\epsilon_{j}}
$$

- simplified: $O\left(K T^{1 / B} \log (T) \sum_{j} \frac{1}{\epsilon_{j}}\right)$
- worst-case: $O\left(\frac{K^{2} T^{1 / B} \log (T)}{\epsilon_{\min }}\right) ; \epsilon_{\min }=\min _{j: \epsilon_{j}>0} \epsilon_{j}$
- lower bound result: $\Omega\left(\frac{K T^{1 / B}}{B^{2} \epsilon_{\text {min }}}\right)$

Main Results

Theorem 2

There is an algorithm for batched dueling bandits that uses at most $B+1$ batches, and if the instance satisfies the SST and STI assumptions, the expected regret is bounded by

$$
\mathbb{E}[R(T)]=\sum_{j: \epsilon_{j}>0} O\left(\frac{\sqrt{K} T^{1 / B} \log (T)}{\epsilon_{j}}\right)
$$

Main Results

Theorem 2

There is an algorithm for batched dueling bandits that uses at most $B+1$ batches, and if the instance satisfies the SST and STI assumptions, the expected regret is bounded by

$$
\mathbb{E}[R(T)]=\sum_{j: \epsilon_{j}>0} O\left(\frac{\sqrt{K} T^{1 / B} \log (T)}{\epsilon_{j}}\right)
$$

- worst-case: $O\left(\frac{K^{1.5} T^{1 / B} \log (T)}{\epsilon_{\min }}\right)$

Main Results

Theorem 3

There is an algorithm for batched dueling bandits that uses at most $2 B+1$ batches, and if the instance satisfies the SST and STI assumptions, the expected regret is bounded by

$$
\mathbb{E}[R(T)]=O\left(\frac{K B T^{1 / B} \log (T)}{\epsilon_{\min }}\right) .
$$

Main Results

Theorem 3

There is an algorithm for batched dueling bandits that uses at most $2 B+1$ batches, and if the instance satisfies the SST and STI assumptions, the expected regret is bounded by

$$
\mathbb{E}[R(T)]=O\left(\frac{K B T^{1 / B} \log (T)}{\epsilon_{\min }}\right)
$$

- better dependence on K

Main Results

Theorem 3

There is an algorithm for batched dueling bandits that uses at most $2 B+1$ batches, and if the instance satisfies the SST and STI assumptions, the expected regret is bounded by

$$
\mathbb{E}[R(T)]=O\left(\frac{K B T^{1 / B} \log (T)}{\epsilon_{\min }}\right) .
$$

- better dependence on K; additional dependence on B

Comparison to Sequential Algs

Notation: $\epsilon_{j}=\epsilon\left(i^{*}, j\right), \epsilon_{\min }=\min _{j: \epsilon_{j}>0} \epsilon_{j}$

Setting	Fully Adaptive (prior work)	Our Algorithms	
	Regret	Rounds	
Condorcet	$O\left(K \frac{\log T}{\epsilon_{\min }}\right)+O\left(\frac{K^{2}}{\epsilon_{\text {min }}}\right)$	$O\left(\frac{K^{2} T^{1 / B} \log (T)}{\epsilon_{\min }}\right)$	B
SST +STI	$O\left(\frac{K \log (T)}{\epsilon_{\min }}\right)$	$O\left(\frac{K B T^{1 / B} \log (T)}{\epsilon_{\min }}\right)$	$2 B+1$

Comparison to Sequential Algs

Notation: $\epsilon_{j}=\epsilon\left(i^{*}, j\right), \epsilon_{\min }=\min _{j: \epsilon_{j}>0} \epsilon_{j}$

Setting	Fully Adaptive (prior work)	Our Algorithms	
	Regret	Rounds	
Condorcet	$O\left(K \frac{\log T}{\epsilon_{\text {min }}}\right)+O\left(\frac{K^{2}}{\epsilon_{\min }}\right)$	$O\left(\frac{K^{2} \log (T)}{\epsilon_{\min }}\right)$	$\log (T)$
SST +STI	$O\left(\frac{K \log (T)}{\epsilon_{\text {min }}}\right)$	$O\left(\frac{K \log ^{2}(T)}{\epsilon_{\min }}\right)$	$2 \log (T)+1$

Intuition

Intuition

few comparisons suffice to decide better option

Intuition

Intuition

may require many comparisons to decide better option

Algorithm

Existence of Condorcet winner; i.e. best arm

Algorithm

Existence of Condorcet winner; i.e. best arm

In batch $r \in[B]$:

- compare all surviving pairs $c_{r}=T^{r / B}$ times

Algorithm

Existence of Condorcet winner; i.e. best arm

In batch $r \in[B]$:

- compare all surviving pairs $c_{r}=T^{r / B}$ times
- so we don't waste comparisons on sub-optimal arms

Algorithm

Existence of Condorcet winner; i.e. best arm

In batch $r \in[B]$:

- compare all surviving pairs $c_{r}=T^{r / B}$ times
- so we don't waste comparisons on sub-optimal arms
- eliminate sub-optimal arms before moving to next batch

Algorithm

Existence of Condorcet winner; i.e. best arm

In batch $r \in[B]$:

- compare all surviving pairs $c_{r}=T^{r / B}$ times
- so we don't waste comparisons on sub-optimal arms
- eliminate sub-optimal arms before moving to next batch

Elimination criteria:

- set precision $\gamma_{r}=\sqrt{\log \left(\frac{1}{\delta}\right) / 2 c_{r}} ; \delta \approx T^{-4}$

Algorithm

Existence of Condorcet winner; i.e. best arm

In batch $r \in[B]$:

- compare all surviving pairs $c_{r}=T^{r / B}$ times
- so we don't waste comparisons on sub-optimal arms
- eliminate sub-optimal arms before moving to next batch

Elimination criteria:

- set precision $\gamma_{r}=\sqrt{\log \left(\frac{1}{\delta}\right) / 2 c_{r}} ; \delta \approx T^{-4}$
- delete j if $\widehat{P}_{i, j}>1 / 2+\gamma_{r}$

$$
\widehat{P}_{i, j}=\frac{\# \text { times } i \text { wins over } j}{\# \text { times } i \text { and } j \text { compared in round } r}
$$

Regret Analysis I

- Correct estimate if $\left|P_{i, j}-\widehat{P}_{i, j}\right| \leq \gamma_{r}$: denoted $P_{i, j} \approx_{r} \widehat{P}_{i, j}$

Regret Analysis I

- Correct estimate if $\left|P_{i, j}-\widehat{P}_{i, j}\right| \leq \gamma_{r}$: denoted $P_{i, j} \approx_{r} \widehat{P}_{i, j}$
- By Hoeffding: every estimate is correct in every batch with high probability

Regret Analysis II

Assumptions: Condorcet winner $+P_{i, j} \approx_{r} \widehat{P}_{i, j}$
Notation: $\epsilon_{j}=\epsilon\left(i^{*}, j\right)$

Regret Analysis II

Assumptions: Condorcet winner $+P_{i, j} \approx_{r} \widehat{P}_{i, j}$
Notation: $\epsilon_{j}=\epsilon\left(i^{*}, j\right)$

- Recall: if $\widehat{P}_{i, j}>1 / 2+\gamma_{r}$, delete j

Regret Analysis II

Assumptions: Condorcet winner $+P_{i, j} \approx_{r} \widehat{P}_{i, j}$ Notation: $\epsilon_{j}=\epsilon\left(i^{*}, j\right)$

- Recall: if $\widehat{P}_{i, j}>1 / 2+\gamma_{r}$, delete j
- i^{*} never deleted

Regret Analysis II

Assumptions: Condorcet winner $+P_{i, j} \approx_{r} \widehat{P}_{i, j}$ Notation: $\epsilon_{j}=\epsilon\left(i^{*}, j\right)$

- Recall: if $\widehat{P}_{i, j}>1 / 2+\gamma_{r}$, delete j
- i^{*} never deleted: else $P_{i, i^{*}} \leq \widehat{P}_{i, j}-\gamma_{r}<1 / 2$, contradiction

Regret Analysis II

Assumptions: Condorcet winner $+P_{i, j} \approx_{r} \widehat{P}_{i, j}$
Notation: $\epsilon_{j}=\epsilon\left(i^{*}, j\right)$

- Recall: if $\widehat{P}_{i, j}>1 / 2+\gamma_{r}$, delete j
- i^{*} never deleted: else $P_{i, i^{*}} \leq \widehat{P}_{i, j}-\gamma_{r}<1 / 2$, contradiction
- can use i^{*} as an anchor to eliminate others

Regret Analysis II

Assumptions: Condorcet winner $+P_{i, j} \approx_{r} \widehat{P}_{i, j}$
Notation: $\epsilon_{j}=\epsilon\left(i^{*}, j\right)$

- Recall: if $\widehat{P}_{i, j}>1 / 2+\gamma_{r}$, delete j
- i^{*} never deleted: else $P_{i, i^{*}} \leq \widehat{P}_{i, j}-\gamma_{r}<1 / 2$, contradiction
- can use i^{*} as an anchor to eliminate others
- Suppose j not deleted in batch $r: P_{i^{*}, j} \leq 1 / 2+2 \gamma_{r}$

$$
\epsilon_{j} \leq 2 \gamma_{r}=2 \sqrt{\frac{\log (1 / \delta)}{2 c_{r}}} \Rightarrow c_{r} \leq \frac{2 \log (1 / \delta)}{\epsilon_{j}^{2}}
$$

Regret Analysis II

Assumptions: Condorcet winner $+P_{i, j} \approx_{r} \widehat{P}_{i, j}$
Notation: $\epsilon_{j}=\epsilon\left(i^{*}, j\right)$

- Recall: if $\widehat{P}_{i, j}>1 / 2+\gamma_{r}$, delete j
- i^{*} never deleted: else $P_{i, i^{*}} \leq \widehat{P}_{i, j}-\gamma_{r}<1 / 2$, contradiction
- can use i^{*} as an anchor to eliminate others
- Suppose j not deleted in batch $r: P_{i^{*}, j} \leq 1 / 2+2 \gamma_{r}$

$$
\epsilon_{j} \leq 2 \gamma_{r}=2 \sqrt{\frac{\log (1 / \delta)}{2 c_{r}}} \Rightarrow c_{r} \leq \frac{2 \log (1 / \delta)}{\epsilon_{j}^{2}}
$$

- Let r be the last such batch; then
- \# comparisons of j and $i^{*} \leq \sum_{\tau=1}^{r+1} c_{\tau} \leq 2 T^{1 / B} \cdot \frac{2 \log (1 / \delta)}{\epsilon_{j}^{2}}$

Regret Analysis II

Assumptions: Condorcet winner $+P_{i, j} \approx_{r} \widehat{P}_{i, j}$
Notation: $\epsilon_{j}=\epsilon\left(i^{*}, j\right)$

- Recall: if $\widehat{P}_{i, j}>1 / 2+\gamma_{r}$, delete j
- i^{*} never deleted: else $P_{i, i^{*}} \leq \widehat{P}_{i, j}-\gamma_{r}<1 / 2$, contradiction
- can use i^{*} as an anchor to eliminate others
- Suppose j not deleted in batch $r: P_{i^{*}, j} \leq 1 / 2+2 \gamma_{r}$

$$
\epsilon_{j} \leq 2 \gamma_{r}=2 \sqrt{\frac{\log (1 / \delta)}{2 c_{r}}} \Rightarrow c_{r} \leq \frac{2 \log (1 / \delta)}{\epsilon_{j}^{2}}
$$

- Let r be the last such batch; then
- \# comparisons of j and $i^{*} \leq \sum_{\tau=1}^{r+1} c_{\tau} \leq 2 T^{1 / B} \cdot \frac{2 \log (1 / \delta)}{\epsilon_{j}^{2}}$
- total comparisons for $j \leq K \cdot 2 T^{1 / B} \cdot \frac{2 \log (1 / \delta)}{\epsilon_{j}^{2}}=T_{j}$

Regret Analysis II

Assumptions: Condorcet winner $+P_{i, j} \approx_{r} \widehat{P}_{i, j}$
Notation: $\epsilon_{j}=\epsilon\left(i^{*}, j\right)$

- Recall: if $\widehat{P}_{i, j}>1 / 2+\gamma_{r}$, delete j
- i^{*} never deleted: else $P_{i, i^{*}} \leq \widehat{P}_{i, j}-\gamma_{r}<1 / 2$, contradiction
- can use i^{*} as an anchor to eliminate others
- Suppose j not deleted in batch $r: P_{i^{*}, j} \leq 1 / 2+2 \gamma_{r}$

$$
\epsilon_{j} \leq 2 \gamma_{r}=2 \sqrt{\frac{\log (1 / \delta)}{2 c_{r}}} \Rightarrow c_{r} \leq \frac{2 \log (1 / \delta)}{\epsilon_{j}^{2}}
$$

- Let r be the last such batch; then
- \# comparisons of j and $i^{*} \leq \sum_{\tau=1}^{r+1} c_{\tau} \leq 2 T^{1 / B} \cdot \frac{2 \log (1 / \delta)}{\epsilon_{j}^{2}}$
- total comparisons for $j \leq K \cdot 2 T^{1 / B} \cdot \frac{2 \log (1 / \delta)}{\epsilon_{j}^{2}}=T_{j}$
- total regret contribution: $\epsilon_{j} \cdot T_{j}$

Regret Analysis II

Assumptions: Condorcet winner $+P_{i, j} \approx_{r} \widehat{P}_{i, j}$
Notation: $\epsilon_{j}=\epsilon\left(i^{*}, j\right)$

- Recall: if $\widehat{P}_{i, j}>1 / 2+\gamma_{r}$, delete j
- i^{*} never deleted: else $P_{i, i^{*}} \leq \widehat{P}_{i, j}-\gamma_{r}<1 / 2$, contradiction
- can use i^{*} as an anchor to eliminate others
- Suppose j not deleted in batch $r: P_{i^{*}, j} \leq 1 / 2+2 \gamma_{r}$

$$
\epsilon_{j} \leq 2 \gamma_{r}=2 \sqrt{\frac{\log (1 / \delta)}{2 c_{r}}} \Rightarrow c_{r} \leq \frac{2 \log (1 / \delta)}{\epsilon_{j}^{2}}
$$

- Let r be the last such batch; then
- \# comparisons of j and $i^{*} \leq \sum_{\tau=1}^{r+1} c_{\tau} \leq 2 T^{1 / B} \cdot \frac{2 \log (1 / \delta)}{\epsilon_{j}^{2}}$
- total comparisons for $j \leq K \cdot 2 T^{1 / B} \cdot \frac{2 \log (1 / \delta)}{\epsilon_{j}^{2}}=T_{j}$
- total regret contribution: $\epsilon_{j} \cdot T_{j}$
- Summing over all j gives the Condorcet guarantee!

Algorithm+: Seeded Comparisons

Algorithm+: Seeded Comparisons

- Compare each seed with every active arm as before

Algorithm+: Seeded Comparisons

- Compare each seed with every active arm as before
- Eliminate sub-optimal arms

Algorithm+: Seeded Comparisons

- Compare each seed with every active arm as before
- Eliminate sub-optimal arms
- Switch to all pairs policy if $<\sqrt{K}$ arms remain (this is ok!)

Algorithm+: Seeded Comparisons

- Compare each seed with every active arm as before
- Eliminate sub-optimal arms
- Switch to all pairs policy if $<\sqrt{K}$ arms remain (this is ok!)

Technical insight: randomly chosen seed set contains a "good" arm that acts as anchor

Algorithm+: Seeded Comparisons

- Compare each seed with every active arm as before
- Eliminate sub-optimal arms
- Switch to all pairs policy if $<\sqrt{K}$ arms remain (this is ok!)

Technical insight: randomly chosen seed set contains a "good" arm that acts as anchor \rightarrow gives $\widetilde{O}\left(K^{1.5}\right)$ dependence!

Algorithm++: Additional Adaptivity

- Need more ideas to achieve $\widetilde{O}(K)$ dependence

Algorithm++: Additional Adaptivity

- Need more ideas to achieve $\widetilde{O}(K)$ dependence
- Compare seeds amongst themselves; choose empirical best

Algorithm++: Additional Adaptivity

- Need more ideas to achieve $\widetilde{O}(K)$ dependence
- Compare seeds amongst themselves; choose empirical best
- here we need additional adaptivity
- Use this seed against all active arms

Algorithm++: Additional Adaptivity

- Need more ideas to achieve $\widetilde{O}(K)$ dependence
- Compare seeds amongst themselves; choose empirical best
- here we need additional adaptivity
- Use this seed against all active arms

Technical insight: best seed serves as good proxy for anchor

Algorithm++: Additional Adaptivity

- Need more ideas to achieve $\widetilde{O}(K)$ dependence
- Compare seeds amongst themselves; choose empirical best
- here we need additional adaptivity
- Use this seed against all active arms

Technical insight: best seed serves as good proxy for anchor and at most B different best arms

Algorithm++: Additional Adaptivity

- Need more ideas to achieve $\widetilde{O}(K)$ dependence
- Compare seeds amongst themselves; choose empirical best
- here we need additional adaptivity
- Use this seed against all active arms

Technical insight: best seed serves as good proxy for anchor and at most B different best arms \rightarrow gives $\widetilde{O}(K B)$ dependence!

Computations: Set-up

Datasets used

Computations: Set-up

Datasets used

- ArXiv: Six rankers
- Sushi
- Synthetic data based on BTL model
- Synthetic data based on Hard Instances

Computations: Set-up

Datasets used

- ArXiv: Six rankers
- Sushi
- Synthetic data based on BTL model
- Synthetic data based on Hard Instances

Benchmarks

- RMED (Komiyama et al., 2015)
- RUCB (Zoghi et al., 2014)
- BTM (Yue and Joachims, 2011)

Computations: Regret using $\log (T)$ batches

Figure: (a) Six rankers

Computations: Trade-off b/w regret and \#batches

Figure: (a) Six rankers

Conclusion

- Introduce the batched dueling bandit problem

Conclusion

- Introduce the batched dueling bandit problem
- Give algorithms that obtain a trade-off b/w \#batches and regret for two pairwise comparison models:
- SST + STI
- Condorcet

Conclusion

- Introduce the batched dueling bandit problem
- Give algorithms that obtain a trade-off b/w \#batches and regret for two pairwise comparison models:
- SST + STI
- Condorcet
- Also give matching lower bound against \# batches
- $\Omega\left(T^{1 / B}\right)$ for B batches

Conclusion

- Introduce the batched dueling bandit problem
- Give algorithms that obtain a trade-off b/w \#batches and regret for two pairwise comparison models:
- SST + STI
- Condorcet
- Also give matching lower bound against \# batches
- $\Omega\left(T^{1 / B}\right)$ for B batches
- Experiments corroborate our theoretical results

Conclusion

- Introduce the batched dueling bandit problem
- Give algorithms that obtain a trade-off b/w \#batches and regret for two pairwise comparison models:
- SST + STI
- Condorcet
- Also give matching lower bound against \# batches
$-\Omega\left(T^{1 / B}\right)$ for B batches
- Experiments corroborate our theoretical results
- Open Question I: How many batches are needed to exactly match sequential results in (i) SST+STI, and (ii) Condorcet

Conclusion

- Introduce the batched dueling bandit problem
- Give algorithms that obtain a trade-off b/w \#batches and regret for two pairwise comparison models:
- SST + STI
- Condorcet
- Also give matching lower bound against \# batches
- $\Omega\left(T^{1 / B}\right)$ for B batches
- Experiments corroborate our theoretical results
- Open Question I: How many batches are needed to exactly match sequential results in (i) SST+STI, and (ii) Condorcet
- Open Question II: Can we obtain similar results for more general notions of winner; for e.g., von Nuemann winner, Copeland winner, etc.

Conclusion

- Introduce the batched dueling bandit problem
- Give algorithms that obtain a trade-off b/w \#batches and regret for two pairwise comparison models:
- SST + STI
- Condorcet
- Also give matching lower bound against \# batches
- $\Omega\left(T^{1 / B}\right)$ for B batches
- Experiments corroborate our theoretical results
- Open Question I: How many batches are needed to exactly match sequential results in (i) SST+STI, and (ii) Condorcet
- Open Question II: Can we obtain similar results for more general notions of winner; for e.g., von Nuemann winner, Copeland winner, etc.
- Full paper: https://tinyurl.com/batcheddb

Conclusion

- Introduce the batched dueling bandit problem
- Give algorithms that obtain a trade-off b/w \#batches and regret for two pairwise comparison models:
- SST + STI
- Condorcet
- Also give matching lower bound against \# batches
- $\Omega\left(T^{1 / B}\right)$ for B batches
- Experiments corroborate our theoretical results
- Open Question I: How many batches are needed to exactly match sequential results in (i) SST+STI, and (ii) Condorcet
- Open Question II: Can we obtain similar results for more general notions of winner; for e.g., von Nuemann winner, Copeland winner, etc.
- Full paper: https://tinyurl.com/batcheddb

THANK YOU!

