Batched Dueling Bandits

Arpit Agarwal¹ Rohan Ghuge² Viswanath Nagarajan²

¹Data Science Institute, Columbia University.

²Department of Industrial and Operations Engineering, University of Michigan.

July 18, 2022

https://www.expedia.com > ... > Maryland i

Top Hotels in Baltimore, MD from \$76 - Expedia

Check Baltimore (and vicinity) hotel prices · Canopy by Hilton Baltimore Harbor Point DoubleTree Hotel Baltimore - BWI Airport - Baltimore Marriott Waterfront. Accommodation: 673 hotels Highest Price: \$182 Number of reviews: 9622

https://www.kavak.com > ... > Hotels in Maryland

16 Best Hotels in Baltimore. Hotels from \$59/night - KAYAK

Baltimore hotels near The Baltimore Convention Center ; La Quinta Inn & Suites by Wyndham Baltimore Downtown - Baltimore - Bedroom, La Quinta Inn & Suites by ...

Average price (weekend night): \$200 Average price (weeknight): \$175

Low season: May High season: March

https://travel.usnews.com > Hotels > USA

25 Best Hotels in Baltimore, MD - US News Travel

Four Seasons Hotel Baltimore · Sagamore Pendry Baltimore · Kimpton Hotel Monaco Baltimore Inner Harbor · Royal Sonesta Harbor Court Baltimore · Hotel Indigo ...

https://baltimore.org > Plan

Baltimore Hotels & Lodging | Visit Baltimore

Looking for a guick getaway? Book a staycation at a Baltimore hotel in the heart of downtown or try one of the city's many charming neighborhood hotels. And, ...

https://www.travelocity.com > ... > Maryland

Baltimore Hotels from \$72 - Hotel Deals - Travelocity

Most frequently booked Baltimore hotels · Renaissance Baltimore Harborplace Hotel · Hyatt Regency Baltimore Inner Harbor · The Westin Baltimore Washington Airport ...

https://www.trivago.com > USA > Maryland

Baltimore Hotels | Find & compare great deals on trivago

Hotels in Baltimore, USA · Sagamore Pendry Baltimore · Four Seasons Hotel Baltimore · Hyatt Regency Baltimore Inner Harbor · Holiday Inn Express & Suites Baltimore

https://www.choicehotels.com > Baltimore, MD, US

Hotels in Baltimore, MD - Choice Hotels

24 hotels near Baltimore, Marvland : Sleep Inn & Suites Downtown Inner Harbor · 0.14 mi. 1463 : The Inn at Henderson's Wharf, Ascend Hotel Collection - 1.31 mi.

https://www.expedia.com > ... > Maryland

Top Hotels in Baltimore, MD from \$76 - Expedia

Check Baltimore (and vicinity) hotel prices - Canopy by Hilton Baltimore Harbor Point DoubleTree Hotel Baltimore - BWI Airport - Baltimore Marriott Waterfront. Accommodation: 673 hotels Highest Price: \$182 Number of reviews: 9622

https://www.kavak.com Hotels in Mandand

16 Best Hotels in Baltimore. Hotels from \$59/night - KAYAK Baltimore hotels near The Baltimore Convention Center ; La Quinta Inn & Suites by Wyndham Baltimore Downtown - Baltimore - Bedroom, La Quinta Inn & Suites by ...

Average price (weekend night): \$200 Average price (weeknight): \$175

Low season: May High season: March

https://traval.uspews.com.ukotels.v1/SA

25 Best Hotels in Baltimore, MD - US News Travel

Four Seasons Hotel Baltimore · Sagamore Pendry Baltimore · Kimpton Hotel Monaco Baltimore Inner Harbor · Royal Sonesta Harbor Court Baltimore · Hotel Indigo ...

https://baltimore.org > Plan

Baltimore Hotels & Lodging | Visit Baltimore

Looking for a guick getaway? Book a staycation at a Baltimore hotel in the heart of downtown or try one of the city's many charming neighborhood hotels. And, ...

https://www.travelocity.com > ... > Maryland

Baltimore Hotels from \$72 - Hotel Deals - Travelocity

Most frequently booked Baltimore hotels · Renaissance Baltimore Harborplace Hotel Hvatt Regency Baltimore Inner Harbor - The Westin Baltimore Washington Aircort ...

https://www.trivago.com > USA > Maryland

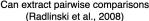
Baltimore Hotels | Find & compare great deals on trivago

Hotels in Baltimore, USA - Sagamore Pendry Baltimore - Four Seasons Hotel Baltimore · Hvatt Regency Baltimore Inner Harbor · Holiday Inn Express & Suites Baltimore

https://www.choicehotels.com > Baltimore, MD, US

Hotels in Baltimore, MD - Choice Hotels

24 hotels near Baltimore, Maryland ; Sleep Inn & Suites Downtown Inner Harbor · 0.14 mi 1463 : The Inn at Mendemon's Wharf Ascend Metel Collection : 1.31 mi



イロト 不得 トイヨト イヨト

-

2 / 24

Can extract pairwise comparisons

https://www.expedia.com > ... > Maryland

Top Hotels in Baltimore, MD from \$76 - Expedia

Check Battimore (and vicinity) hotel prices - Canopy by Hiton Battimore Harbor Point Double Tree Hotel Battimore - BWI Airport - Battimore Marriott Waterfront. Accommodation: 673 hotels Highest Price: \$182 Number of review: 9622

or Point -

https://www.kayak.com > ... > Hotels in Maryland

16 Best Hotels in Baltimore. Hotels from \$59/night - KAYAK

Baltimore hotels near The Baltimore Convention Center ; La Quinta Inn & Suites by Wyndham Baltimore Downtown - Baltimore - Bedroom. La Quinta Inn & Suites by ...

Average price (weekend night): \$200 Average price (weeknight): \$175 Low season: May High season: March

https://travel.usnews.com > Hotels > USA 1

25 Best Hotels in Baltimore, MD - US News Travel

Four Seasons Hotel Baltimore - Sagamore Pendry Baltimore - Kimpton Hotel Monaco Baltimore Inner Harbor - Royal Sonesta Harbor Court Baltimore - Hotel Indigo ...

https://baltimore.org > Plan

Baltimore Hotels & Lodging | Visit Baltimore

Looking for a quick getaway? Book a staycation at a Baltimore hotel in the heart of downtown or try one of the city's many charming neighborhood hotels. And, ...

https://www.travelocity.com > ... > Maryland

Baltimore Hotels from \$72 - Hotel Deals - Travelocity

Most frequently booked Baltimore hotels · Renaissance Baltimore Harborplace Hotel · Hyatt Regency Baltimore Inner Harbor · The Westin Baltimore Washington Airport ...

https://www.trivago.com > USA > Maryland

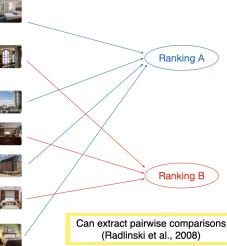
Baltimore Hotels | Find & compare great deals on trivago

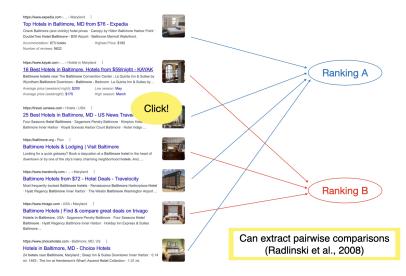
Hotels in Baltimore, USA - Sagamore Pendry Baltimore - Four Seasons Hotel Baltimore - Hyatt Regency Baltimore Inner Harbor - Holiday Inn Express & Suites Baltimore ...

https://www.choicehotels.com > Baltimore, MD, US

Hotels in Baltimore, MD - Choice Hotels

24 hotels near Baltimore, Maryland ; Sleep Inn & Suites Downtown Inner Harbor - 0.14 mi. 1463 ; The Inn at Henderson's Wharf, Ascend Hotel Collection - 1.31 mi.





Motivation II: Movie Recommendation

Motivation II: Movie Recommendation

Simultaneously satisfy users and determine best movie

K arms
time horizon T

K arms
time horizon *T*in trial *t* ∈ [*T*]: select pair (*i*_t, *j*_t)

- ► K arms
- time horizon T
- ▶ in trial $t \in [T]$:

select pair (i_t, j_t) observe noisy comparison

- ► K arms
- time horizon T
- ▶ in trial t ∈ [T]: select pair (it, jt) observe noisy comparison
- noisy comparison:

 $Pr(i \text{ beats } j) = P_{i,j}$ comparisons are independent

- ► K arms
- time horizon T
- ► in trial $t \in [T]$: select pair (i_t, j_t) observe noisy comparison
- noisy comparison:

 $\begin{aligned} &\mathsf{Pr}(i \text{ beats } j) = P_{i,j} \\ &\mathsf{comparisons are independent} \\ &P_{i,j} = \frac{1}{2} + \epsilon(i,j): \text{ measure of distinguishability} \end{aligned}$

► K arms

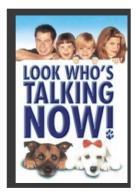
time horizon T
in trial t ∈ [T]: select pair (it, jt) observe noisy comparison
noisy comparison: Pr(i beats j) = Pi,j comparisons are independent Pi,j = 1/2 + e(i,j): measure of distinguishability
assume i* = best arm; e(i*, i) ≥ 0 for all i

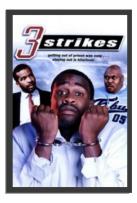
► K arms time horizon T \blacktriangleright in trial $t \in [T]$: select pair (i_t, j_t) observe noisy comparison noisy comparison: $Pr(i \text{ beats } j) = P_{i,i}$ comparisons are independent $P_{i,i} = \frac{1}{2} + \epsilon(i,j)$: measure of distinguishability ▶ assume $i^* = \text{best arm}$; $\epsilon(i^*, i) \ge 0$ for all i

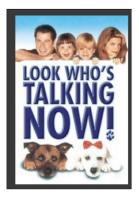
Goal: perform noisy comparisons that have low regret wrt i^*

want to maximize user satisfaction

<ロ><回><一><一><一><一><一><一</td>5/24







may help in learning; users may be unsatisfied

simultaneously learn and keep users satisfied

let $i^* = \text{best arm}$

- let i* = best arm
- ▶ in trial *t*:
 - (i_t, j_t) selected

- let i* = best arm
- ▶ in trial *t*:
 - (i_t, j_t) selected

-
$$r(t) = \epsilon_{i_t} + \epsilon_{j_t}$$

- let i* = best arm
- in trial t:
 - (i_t, j_t) selected

- $r(t) = \epsilon_{i_t} + \epsilon_{j_t}$: measures sub-optimality against i^* notation: $\epsilon_j = \epsilon(i^*, j)$

- let i* = best arm
- in trial t:
 - (i_t, j_t) selected

- $r(t) = \epsilon_{i_t} + \epsilon_{j_t}$: measures sub-optimality against i^* notation: $\epsilon_j = \epsilon(i^*, j)$

- total regret $R(T) = \sum_t r(t)$

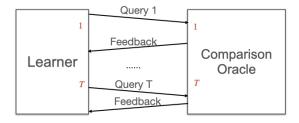
- let i* = best arm
- in trial t:
 - (i_t, j_t) selected

- $r(t) = \epsilon_{i_t} + \epsilon_{j_t}$: measures sub-optimality against i^* notation: $\epsilon_j = \epsilon(i^*, j)$

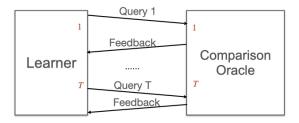
- total regret $R(T) = \sum_t r(t)$

Perform noisy comparisons with low regret wrt i^*

Full Adaptivity

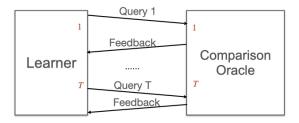


Full Adaptivity



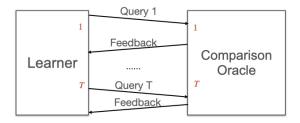
policy updates one at a time

Full Adaptivity



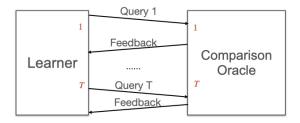
- policy updates one at a time
- can use prior observations to make selection

Full Adaptivity

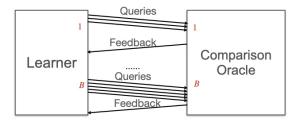


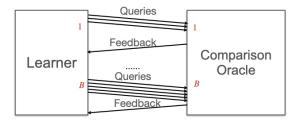
- policy updates one at a time
- can use prior observations to make selection
- may be infeasible in large systems

Full Adaptivity

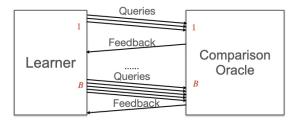


- policy updates one at a time
- can use prior observations to make selection
- may be infeasible in large systems
- requires large computational resources

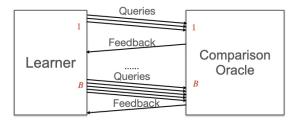




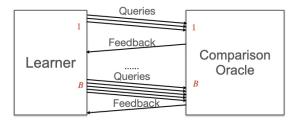
learner makes multiple comparisons in parallel



- learner makes multiple comparisons in parallel
- receives all feedback simultaneously



- learner makes multiple comparisons in parallel
- receives all feedback simultaneously
- adaptively selects next batch



- learner makes multiple comparisons in parallel
- receives all feedback simultaneously
- adaptively selects next batch

Given number of batches B, perform B batches of noisy comparisons with low regret wrt i^*

Main Results: Informal

Trade-off b/w # batches and regret under two well-studied pairwise comparison models:

(1) SST + STI
 (2) Condorcet

Main Results: Informal

Trade-off b/w # batches and regret under two well-studied pairwise comparison models:

 (1) SST + STI
 (2) Condorcet

 O(BT^{1/B} log(T)) regret in O(B) rounds

 O(log²(T)) regret in O(log(T)) rounds
 Ignoring dependence on K

Main Results: Informal

Trade-off b/w # batches and regret under two well-studied pairwise comparison models:

 (1) SST + STI
 (2) Condorcet

 O(BT^{1/B} log(T)) regret in O(B) rounds

 O(log²(T)) regret in O(log(T)) rounds Ignoring dependence on K

 Lower bound: Ω(T^{1/B}) in B rounds

$$\bullet \epsilon(i,j) = P_{i,j} - 1/2$$

$$\bullet \ \epsilon(i,j) = P_{i,j} - 1/2$$

▶ Condorcet: $\exists i^*$ such that $\epsilon(i^*, i) \ge 0$ for $i \neq i^*$

$$\epsilon(i,j) = P_{i,j} - 1/2$$

• Condorcet: $\exists i^*$ such that $\epsilon(i^*, i) \ge 0$ for $i \ne i^*$

- there exists a best arm

$$\bullet \ \epsilon(i,j) = P_{i,j} - 1/2$$

► Condorcet: $\exists i^*$ such that $\epsilon(i^*, i) \ge 0$ for $i \ne i^*$ - there exists a best arm

▶ SST + STI: \exists ordering \succ such that for $i \succ j \succ k$:

- $\epsilon(i,k) \ge \max{\epsilon(i,j), \epsilon(j,k)}$ (Strong Stoch. Transitivity)

- $\epsilon(i,k) \leq \epsilon(i,j) + \epsilon(j,k)$ (Stoch. Triangle Inequality)

$$\bullet \ \epsilon(i,j) = P_{i,j} - 1/2$$

► Condorcet: $\exists i^*$ such that $\epsilon(i^*, i) \ge 0$ for $i \ne i^*$ - there exists a best arm

▶ SST + STI: \exists ordering \succ such that for $i \succ j \succ k$:

- $\epsilon(i,k) \ge \max{\epsilon(i,j), \epsilon(j,k)}$ (Strong Stoch. Transitivity)

- $\epsilon(i,k) \leq \epsilon(i,j) + \epsilon(j,k)$ (Stoch. Triangle Inequality)

Condorcet setting is more general

$$\bullet \ \epsilon(i,j) = P_{i,j} - 1/2$$

► Condorcet: $\exists i^*$ such that $\epsilon(i^*, i) \ge 0$ for $i \ne i^*$ - there exists a best arm

▶ SST + STI: \exists ordering \succ such that for $i \succ j \succ k$:

- $\epsilon(i,k) \ge \max{\epsilon(i,j), \epsilon(j,k)}$ (Strong Stoch. Transitivity)

- $\epsilon(i,k) \leq \epsilon(i,j) + \epsilon(j,k)$ (Stoch. Triangle Inequality)

Condorcet setting is more general

 Extensive amount of work on sequential algs: Yue et al. (2012), Yue and Joachims (2011), Zoghi et al. (2014), Komiyama et al. (2015)

Theorem 1

There is an algorithm for batched dueling bandits that uses at most B rounds, and if the instance admits a Condorcet winner, the expected regret is bounded by

$$\mathbb{E}[R(T)] \leq 3KT^{1/B} \log \left(6TK^2B \right) \sum_{j:\epsilon_j > 0} \frac{1}{\epsilon_j}.$$

Theorem 1

There is an algorithm for batched dueling bandits that uses at most B rounds, and if the instance admits a Condorcet winner, the expected regret is bounded by

$$\mathbb{E}[R(T)] \leq 3KT^{1/B} \log \left(6TK^2B \right) \sum_{j:\epsilon_j > 0} \frac{1}{\epsilon_j}.$$

Theorem 2

There is an algorithm for batched dueling bandits that uses at most B + 1 batches, and if the instance satisfies the SST and STI assumptions, the expected regret is bounded by

$$\mathbb{E}[R(T)] = \sum_{j:\epsilon_j > 0} O\left(\frac{\sqrt{K}T^{1/B}\log(T)}{\epsilon_j}\right)$$

Theorem 2

There is an algorithm for batched dueling bandits that uses at most B + 1 batches, and if the instance satisfies the SST and STI assumptions, the expected regret is bounded by

$$\mathbb{E}[R(T)] = \sum_{j:\epsilon_j > 0} O\left(\frac{\sqrt{K}T^{1/B}\log(T)}{\epsilon_j}\right)$$

• worst-case:
$$O\left(\frac{K^{1.5}T^{1/B}\log(T)}{\epsilon_{\min}}\right)$$

Theorem 3

There is an algorithm for batched dueling bandits that uses at most 2B + 1 batches, and if the instance satisfies the SST and STI assumptions, the expected regret is bounded by

$$\mathbb{E}[R(T)] = O\left(\frac{KBT^{1/B}\log(T)}{\epsilon_{\min}}\right)$$

Theorem 3

There is an algorithm for batched dueling bandits that uses at most 2B + 1 batches, and if the instance satisfies the SST and STI assumptions, the expected regret is bounded by

$$\mathbb{E}[R(T)] = O\left(\frac{KBT^{1/B}\log(T)}{\epsilon_{\min}}\right)$$

better dependence on K

Theorem 3

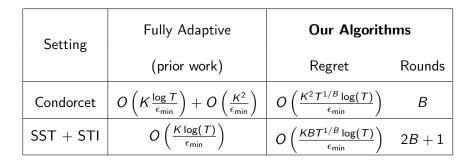
There is an algorithm for batched dueling bandits that uses at most 2B + 1 batches, and if the instance satisfies the SST and STI assumptions, the expected regret is bounded by

$$\mathbb{E}[R(T)] = O\left(\frac{KBT^{1/B}\log(T)}{\epsilon_{\min}}\right)$$

• better dependence on K; additional dependence on B

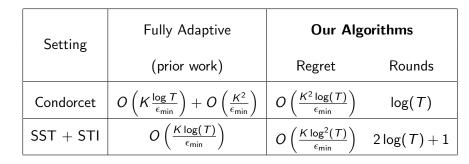
Comparison to Sequential Algs

Notation:
$$\epsilon_j = \epsilon(i^*, j)$$
, $\epsilon_{\min} = \min_{j:\epsilon_j > 0} \epsilon_j$



Comparison to Sequential Algs

Notation:
$$\epsilon_j = \epsilon(i^*, j)$$
, $\epsilon_{\min} = \min_{j:\epsilon_j > 0} \epsilon_j$



few comparisons suffice to decide better option

may require many comparisons to decide better option

Existence of Condorcet winner; i.e. best arm

Existence of Condorcet winner; i.e. best arm

In batch $r \in [B]$: • compare all surviving pairs $c_r = T^{r/B}$ times

Existence of Condorcet winner; i.e. best arm

```
In batch r \in [B]:
```

• compare all surviving pairs $c_r = T^{r/B}$ times

so we don't waste comparisons on sub-optimal arms

Existence of Condorcet winner; i.e. best arm

```
In batch r \in [B]:
```

• compare all surviving pairs $c_r = T^{r/B}$ times

- so we don't waste comparisons on sub-optimal arms
- eliminate sub-optimal arms before moving to next batch

Existence of Condorcet winner; i.e. best arm

```
In batch r \in [B]:
```

• compare all surviving pairs $c_r = T^{r/B}$ times

- so we don't waste comparisons on sub-optimal arms
- eliminate sub-optimal arms before moving to next batch

Elimination criteria:

• set precision
$$\gamma_r = \sqrt{\log\left(\frac{1}{\delta}\right)/2c_r}; \ \delta \approx T^{-4}$$

Existence of Condorcet winner; i.e. best arm

```
In batch r \in [B]:
```

• compare all surviving pairs $c_r = T^{r/B}$ times

- so we don't waste comparisons on sub-optimal arms
- eliminate sub-optimal arms before moving to next batch

Elimination criteria:

- set precision $\gamma_r = \sqrt{\log\left(\frac{1}{\delta}\right)/2c_r}; \ \delta \approx T^{-4}$
- delete *j* if $\widehat{P}_{i,j} > 1/2 + \gamma_r$

 $\widehat{P}_{i,j} = \frac{\# \text{ times } i \text{ wins over } j}{\# \text{ times } i \text{ and } j \text{ compared in round } r}$

Regret Analysis I

• Correct estimate if $|P_{i,j} - \hat{P}_{i,j}| \le \gamma_r$: denoted $P_{i,j} \approx_r \hat{P}_{i,j}$

- Correct estimate if $|P_{i,j} \hat{P}_{i,j}| \le \gamma_r$: denoted $P_{i,j} \approx_r \hat{P}_{i,j}$
- By Hoeffding: every estimate is correct in every batch with high probability

- Recall: if $\widehat{P}_{i,j} > 1/2 + \gamma_r$, delete j
- i* never deleted

- Recall: if $\widehat{P}_{i,j} > 1/2 + \gamma_r$, delete j
- ► *i*^{*} never deleted: else $P_{i,i^*} \leq \widehat{P}_{i,j} \gamma_r < 1/2$, contradiction

Assumptions: Condorcet winner + $P_{i,j} \approx_r \widehat{P}_{i,j}$ Notation: $\epsilon_j = \epsilon(i^*, j)$

- Recall: if $\widehat{P}_{i,j} > 1/2 + \gamma_r$, delete j
- ► *i** never deleted: else $P_{i,i^*} \leq \hat{P}_{i,j} \gamma_r < 1/2$, contradiction

- can use *i** as an anchor to eliminate others

- Recall: if $\widehat{P}_{i,j} > 1/2 + \gamma_r$, delete j

Assumptions: Condorcet winner + $P_{i,j} \approx_r \widehat{P}_{i,j}$ Notation: $\epsilon_j = \epsilon(i^*, j)$

- Recall: if $\widehat{P}_{i,j} > 1/2 + \gamma_r$, delete j
- *i*^{*} never deleted: else P_{i,i}^{*} ≤ P̂_{i,j} − γ_r < 1/2, contradiction
 can use *i*^{*} as an anchor to eliminate others

► Suppose *j* not deleted in batch *r*: $P_{i^*,j} \le 1/2 + 2\gamma_r$

$$\epsilon_j \leq 2\gamma_r = 2\sqrt{rac{\log(1/\delta)}{2c_r}} \; \Rightarrow \; c_r \leq rac{2\log(1/\delta)}{\epsilon_j^2}$$

Let r be the last such batch; then

- # comparisons of j and $i^* \leq \sum_{\tau=1}^{r+1} c_\tau \leq 2T^{1/B} \cdot \frac{2\log(1/\delta)}{\epsilon_i^2}$

Assumptions: Condorcet winner + $P_{i,j} \approx_r \widehat{P}_{i,j}$ Notation: $\epsilon_j = \epsilon(i^*, j)$

- Recall: if $\widehat{P}_{i,j} > 1/2 + \gamma_r$, delete j
- *i*^{*} never deleted: else P_{i,i}^{*} ≤ P̂_{i,j} − γ_r < 1/2, contradiction
 can use *i*^{*} as an anchor to eliminate others
- ► Suppose *j* not deleted in batch *r*: $P_{i^*,j} \le 1/2 + 2\gamma_r$

$$\epsilon_j \leq 2\gamma_r = 2\sqrt{rac{\log(1/\delta)}{2c_r}} \; \Rightarrow \; c_r \leq rac{2\log(1/\delta)}{\epsilon_j^2}$$

Let r be the last such batch; then

- # comparisons of j and $i^* \leq \sum_{\tau=1}^{r+1} c_\tau \leq 2T^{1/B} \cdot \frac{2\log(1/\delta)}{\epsilon^2}$
- total comparisons for $j \leq K \cdot 2T^{1/B} \cdot \frac{2\log(1/\delta)}{\epsilon_i^2} = T_j$

Assumptions: Condorcet winner + $P_{i,j} \approx_r \widehat{P}_{i,j}$ Notation: $\epsilon_j = \epsilon(i^*, j)$

- Recall: if $\widehat{P}_{i,j} > 1/2 + \gamma_r$, delete j
- *i*^{*} never deleted: else P_{i,i}^{*} ≤ P̂_{i,j} − γ_r < 1/2, contradiction
 can use *i*^{*} as an anchor to eliminate others
- ► Suppose *j* not deleted in batch *r*: $P_{i^*,j} \le 1/2 + 2\gamma_r$

$$\epsilon_j \leq 2\gamma_r = 2\sqrt{rac{\log(1/\delta)}{2c_r}} \; \Rightarrow \; c_r \leq rac{2\log(1/\delta)}{\epsilon_j^2}$$

Let r be the last such batch; then

- # comparisons of j and $i^* \leq \sum_{\tau=1}^{r+1} c_\tau \leq 2T^{1/B} \cdot \frac{2\log(1/\delta)}{\epsilon_i^2}$
- total comparisons for $j \leq \mathbf{K} \cdot 2 T^{1/B} \cdot \frac{2 \log(1/\delta)}{\epsilon_i^2} = \mathcal{T}_j$
- total regret contribution: $\epsilon_j \cdot T_j$

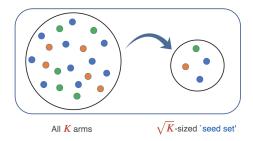
Assumptions: Condorcet winner + $P_{i,j} \approx_r \widehat{P}_{i,j}$ Notation: $\epsilon_j = \epsilon(i^*, j)$

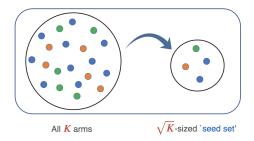
- Recall: if $\widehat{P}_{i,j} > 1/2 + \gamma_r$, delete j
- *i*^{*} never deleted: else P_{i,i}^{*} ≤ P̂_{i,j} − γ_r < 1/2, contradiction
 can use *i*^{*} as an anchor to eliminate others
- Suppose *j* not deleted in batch *r*: $P_{i^*,j} \leq 1/2 + 2\gamma_r$

$$\epsilon_j \leq 2\gamma_r = 2\sqrt{rac{\log(1/\delta)}{2c_r}} \; \Rightarrow \; c_r \leq rac{2\log(1/\delta)}{\epsilon_j^2}$$

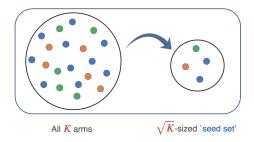
Let r be the last such batch; then

- # comparisons of j and $i^* \leq \sum_{\tau=1}^{r+1} c_\tau \leq 2T^{1/B} \cdot \frac{2\log(1/\delta)}{\epsilon_i^2}$
- total comparisons for $j \leq \mathbf{K} \cdot 2T^{1/B} \cdot \frac{2\log(1/\delta)}{\epsilon_i^2} = T_j$
- total regret contribution: $\epsilon_j \cdot T_j$
- Summing over all j gives the Condorcet guarantee!

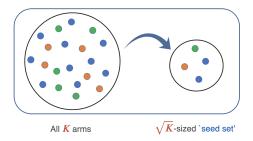




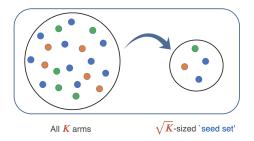
Compare each seed with every active arm as before



- Compare each seed with every active arm as before
- Eliminate sub-optimal arms

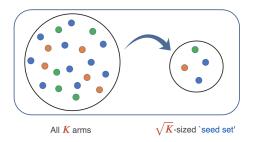


- Compare each seed with every active arm as before
- Eliminate sub-optimal arms
- Switch to all pairs policy if $< \sqrt{K}$ arms remain (this is ok!)



- Compare each seed with every active arm as before
- Eliminate sub-optimal arms
- Switch to all pairs policy if $< \sqrt{K}$ arms remain (this is ok!)

Technical insight: randomly chosen seed set contains a "good" arm that acts as anchor



- Compare each seed with every active arm as before
- Eliminate sub-optimal arms
- Switch to all pairs policy if $< \sqrt{K}$ arms remain (this is ok!)

Technical insight: randomly chosen seed set contains a "good" arm that acts as anchor \rightarrow gives $\widetilde{O}(K^{1.5})$ dependence!

• Need more ideas to achieve $\widetilde{O}(K)$ dependence

- Need more ideas to achieve $\widetilde{O}(K)$ dependence
- Compare seeds amongst themselves; choose empirical best

- Need more ideas to achieve $\widetilde{O}(K)$ dependence
- Compare seeds amongst themselves; choose empirical best
 - here we need additional adaptivity
- Use this seed against all active arms

- Need more ideas to achieve $\widetilde{O}(K)$ dependence
- Compare seeds amongst themselves; choose empirical best
 - here we need additional adaptivity
- Use this seed against all active arms

Technical insight: best seed serves as good proxy for anchor

- Need more ideas to achieve $\widetilde{O}(K)$ dependence
- Compare seeds amongst themselves; choose empirical best
 - here we need additional adaptivity
- Use this seed against all active arms

Technical insight: best seed serves as good proxy for anchor and at most B different best arms

- Need more ideas to achieve $\widetilde{O}(K)$ dependence
- Compare seeds amongst themselves; choose empirical best
 - here we need additional adaptivity
- Use this seed against all active arms

Technical insight: best seed serves as good proxy for anchor and at most *B* different best arms \rightarrow gives $\widetilde{O}(KB)$ dependence! Computations: Set-up

Datasets used

Computations: Set-up

Datasets used

- ArXiv: Six rankers
- Sushi
- Synthetic data based on BTL model
- Synthetic data based on Hard Instances

Computations: Set-up

Datasets used

- ArXiv: Six rankers
- Sushi
- Synthetic data based on BTL model
- Synthetic data based on Hard Instances

Benchmarks

- RMED (Komiyama et al., 2015)
- RUCB (Zoghi et al., 2014)
- BTM (Yue and Joachims, 2011)

Computations: Regret using log(T) batches

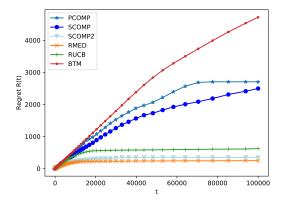


Figure: (a) Six rankers

Computations: Trade-off b/w regret and #batches

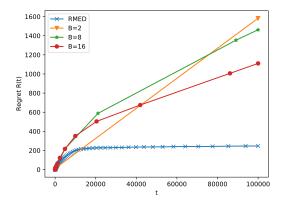


Figure: (a) Six rankers

Introduce the batched dueling bandit problem

- Introduce the batched dueling bandit problem
- Give algorithms that obtain a trade-off b/w #batches and regret for two pairwise comparison models:
 - SST + STI
 - Condorcet

- Introduce the batched dueling bandit problem
- Give algorithms that obtain a trade-off b/w #batches and regret for two pairwise comparison models:
 - SST + STI
 - Condorcet
- ► Also give matching lower bound against # batches
 - $\Omega(T^{1/B})$ for B batches

- Introduce the batched dueling bandit problem
- Give algorithms that obtain a trade-off b/w #batches and regret for two pairwise comparison models:
 - SST + STI
 - Condorcet
- Also give matching lower bound against # batches
 Ω(T^{1/B}) for B batches
- Experiments corroborate our theoretical results

- Introduce the batched dueling bandit problem
- Give algorithms that obtain a trade-off b/w #batches and regret for two pairwise comparison models:
 - SST + STI
 - Condorcet
- Also give matching lower bound against # batches
 Ω(T^{1/B}) for B batches
- Experiments corroborate our theoretical results
- Open Question I: How many batches are needed to exactly match sequential results in (i) SST+STI, and (ii) Condorcet

- Introduce the batched dueling bandit problem
- Give algorithms that obtain a trade-off b/w #batches and regret for two pairwise comparison models:
 - SST + STI
 - Condorcet
- Also give matching lower bound against # batches
 Ω(T^{1/B}) for B batches
- Experiments corroborate our theoretical results
- Open Question I: How many batches are needed to exactly match sequential results in (i) SST+STI, and (ii) Condorcet
- Open Question II: Can we obtain similar results for more general notions of winner; for e.g., von Nuemann winner, Copeland winner, etc.

- Introduce the batched dueling bandit problem
- Give algorithms that obtain a trade-off b/w #batches and regret for two pairwise comparison models:
 - -SST + STI
 - Condorcet
- Also give matching lower bound against # batches
 Ω(T^{1/B}) for B batches
- Experiments corroborate our theoretical results
- Open Question I: How many batches are needed to exactly match sequential results in (i) SST+STI, and (ii) Condorcet
- Open Question II: Can we obtain similar results for more general notions of winner; for e.g., von Nuemann winner, Copeland winner, etc.
- Full paper: https://tinyurl.com/batcheddb

- Introduce the batched dueling bandit problem
- Give algorithms that obtain a trade-off b/w #batches and regret for two pairwise comparison models:
 - SST + STI
 - Condorcet
- Also give matching lower bound against # batches
 Ω(T^{1/B}) for B batches
- Experiments corroborate our theoretical results
- Open Question I: How many batches are needed to exactly match sequential results in (i) SST+STI, and (ii) Condorcet
- Open Question II: Can we obtain similar results for more general notions of winner; for e.g., von Nuemann winner, Copeland winner, etc.
- Full paper: https://tinyurl.com/batcheddb

THANK YOU!