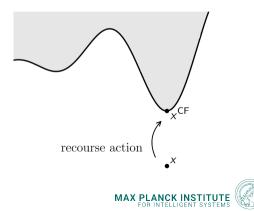
On the Adversarial Robustness of Causal Algorithmic Recourse

Ricardo Dominguez-Olmedo^{1,2}, Amir-Hossein Karimi^{1,3} and Bernhard Schölkopf¹

¹Max Planck Institute for Intelligent Systems, Tübingen ²University of Tübingen ³ETH Zürich



Algorithmic recourse

Provide *actionable recommendations* to overcome unfavorable classification outcomes.

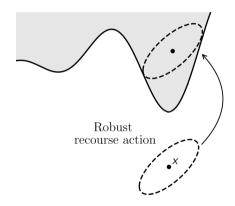
In a loan application setting:

"If your monthly salary were to increase by \$1000, your loan would be approved."

The fragility of recourse

Theorem 1 Minimum-cost recourse is fragile to arbitrarily small changes to the features of the individual x seeking recourse.

- e.g., a recommendation may no longer be valid if age changes by \pm a month
- ... trustworthy recommendations?

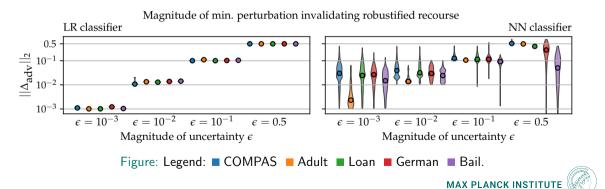

Non-robust recourse action	

Adversarially robust recourse

Iff results in favorable classification outcomes for all plausible individuals in some *uncertainty set* B(x)

$$h\left(\mathbb{CF}\left(x', extbf{a}
ight)
ight) = 1 \quad orall x' \in B(x)$$

The adversarially robust algorithmic recourse problem


$$\begin{array}{ll} \underset{a=do(\mathbf{X}_{\mathcal{I}}=x_{\mathcal{I}}+\theta)}{\operatorname{s.t.}} & c(x,a) & \text{Search for the least effortful action...} \\ & \text{s.t.} & a \in \mathcal{F}(x) & \text{that is actionable} \\ & h\left(\mathbb{CF}\left(x',a\right)\right) = 1 \ \forall x' \in B(x) & \text{and leads to a favourable decision for} \\ & \text{all plausible individuals in the} \\ & uncertainty set B(x) \end{array}$$

- We model a as causal interventions on the features $x \dots$ (Karimi et al., 2021)
- ... in order to reason about counterfactuals in a principled manner (Pearl, 2009)

Generating adversarially robust recourse

- Linear $h(x) = \langle w, x \rangle \geq b$, generate w.r.t. a larger acceptance threshold $b' \geq b$
- Differentiable *h*, solve optimization under *adversarial perturbations* to *x*

Conclusion

- Minimum-cost recourse is provably fragile to arbitrarily small changes to x.
- We formalize the notion of adversarial robustness of recourse.
- We present methods to generate adversarially robust recourse.
- We present a model regularizer that facilitates the existence of robust recourse.

