Demystifying the Adversarial Robustness of Random Transformation Defenses

Chawin Sitawarin

Zachary Golan-Strieb

David Wagner

UC Berkeley

ICML | 2022

Thirty-ninth International Conference on Machine Learning

Contact: chawins@berkeley.edu

Chawin Sitawarin

Demystify Random Transform Defenses

ICML 2022

1/8

• Many works have proposed random input transformation to improve the adversarial robustness of neural networks.

- Many works have proposed random input transformation to improve the adversarial robustness of neural networks.
- However, stochastic defenses are poorly understood, and we still lack reliable tools for measuring their robustness.

- Many works have proposed random input transformation to improve the adversarial robustness of neural networks.
- However, stochastic defenses are poorly understood, and we still lack reliable tools for measuring their robustness.
- We focus on **Barrage of Random Transforms (BaRT)** [Raff et al., 2019] which sequentially applies multiple image transforms to its inputs in random order and with random parameters. Transforms are sampled from a pool of over 20, both differentiable and not.

- Many works have proposed random input transformation to improve the adversarial robustness of neural networks.
- However, stochastic defenses are poorly understood, and we still lack reliable tools for measuring their robustness.
- We focus on **Barrage of Random Transforms (BaRT)** [Raff et al., 2019] which sequentially applies multiple image transforms to its inputs in random order and with random parameters. Transforms are sampled from a pool of over 20, both differentiable and not.

• Raff et al. [2019] used PGD Attack on steroid:

- Raff et al. [2019] used PGD Attack on steroid:
 - **BPDA** (Backward-Pass Differentiable Approximation): use neural networks to approximate gradients of non-differentiable transforms.

- Raff et al. [2019] used PGD Attack on steroid:
 - **BPDA** (Backward-Pass Differentiable Approximation): use neural networks to approximate gradients of non-differentiable transforms.
 - EoT (Expectation over Transformations): deal with randomness.

- Raff et al. [2019] used PGD Attack on steroid:
 - **BPDA** (Backward-Pass Differentiable Approximation): use neural networks to approximate gradients of non-differentiable transforms.
 - EoT (Expectation over Transformations): deal with randomness.
- This was state-of-the-art attack at the time.

- Raff et al. [2019] used PGD Attack on steroid:
 - **BPDA** (Backward-Pass Differentiable Approximation): use neural networks to approximate gradients of non-differentiable transforms.
 - EoT (Expectation over Transformations): deal with randomness.
- This was state-of-the-art attack at the time.
- A large improvement compared to adversarial training on deterministic models. Increases adversarial accuracy from 1.5% to 36%.

- Raff et al. [2019] used PGD Attack on steroid:
 - **BPDA** (Backward-Pass Differentiable Approximation): use neural networks to approximate gradients of non-differentiable transforms.
 - EoT (Expectation over Transformations): deal with randomness.
- This was state-of-the-art attack at the time.
- A large improvement compared to adversarial training on deterministic models. Increases adversarial accuracy from 1.5% to 36%.

	Clean	Images	Atta	cked
Model	Top-1	Top-5	Top-1	Top-5
Inception v3	78	94	0.7	4.4
Inception v3 w/Adv. Train	78	94	(1.5)	5.5
ResNet50	76	93	$\widecheck{0.0}$	0.0
ResNet50-BaRT, $k = 5$	65	85	15	51
ResNet50-BaRT, $k = 10$	65	85	36	57

Accuracy of multiple models trained ImageNet Raff et al. [2019].

Table 1: BaRT	replicate on a	10-class subset c	of ImageNet dataset.
---------------	----------------	-------------------	----------------------

Transforms used in BaRT	Adversarial accuracy		
	Exact	BPDA	Identity
All	n/a	52	36
Only differentiable	26	65	41

- Exact: PGD attack with exact gradients.
- *Identity*: PGD attack with the transforms ignored in the backward pass (treated as an identity function).

Table 1: BaRT replicate on a 1	10-class subset of	ImageNet dataset.
--------------------------------	--------------------	-------------------

Transforms used in BaRT	Adversarial accuracy		
	Exact	BPDA	Identity
All	n/a	52	36
Only differentiable	26	65	41

- Exact: PGD attack with exact gradients.
- *Identity*: PGD attack with the transforms ignored in the backward pass (treated as an identity function).
- We found that BPDA attack is much weaker than Exact and is surprisingly weaker than Identity.

• We suggest that future works **focus on differentiable transformations** only as part of a stochastic defense (until there is a reliable black-box attack or gradient approximation technique).

- We suggest that future works **focus on differentiable transformations** only as part of a stochastic defense (until there is a reliable black-box attack or gradient approximation technique).
- Separate studies on stochastic and non-differentiable models

- We suggest that future works **focus on differentiable transformations** only as part of a stochastic defense (until there is a reliable black-box attack or gradient approximation technique).
- Separate studies on stochastic and non-differentiable models
- Benefits of using only differentiable transforms:
 - More accurate and efficient evaluation
 - Compatible with adversarial training

Better Attack on (Differentiable) Transform Defense

• Setting: non-convex, constrained SGD

Better Attack on (Differentiable) Transform Defense

- Setting: non-convex, constrained SGD
- Attack success rate is highly correlated with variance of gradient estimates.

Better Attack on (Differentiable) Transform Defense

- Setting: non-convex, constrained SGD
- Attack success rate is highly correlated with variance of gradient estimates.
- Key is variance reduction.

```
 \begin{split} & \overline{\operatorname{Algorithm 1}} \text{ Our best attack on RT defenses} \\ & \overline{\operatorname{Inptt:}} \operatorname{Perturbation size } \epsilon, \operatorname{max.} \operatorname{PGD steps } T, \operatorname{step size} \{\gamma_t\}_{t=1}^T, \operatorname{and} \operatorname{AggMo's damping constants} \{\mu_b\}_{b=1}^B.\\ & \overline{\operatorname{Output:}} \operatorname{Adversarial examples } x_{adv} \\ & \overline{\operatorname{Data:}} \operatorname{Test input } x \operatorname{and its ground-truth label } y \\ & u \sim \mathcal{U}[-\epsilon, \epsilon], \quad x_{adv} \leftarrow x + u, \quad \{v_b\}_{b=1}^B \leftarrow \mathbf{0} \\ & \text{for } t = 1 \text{ to } T \text{ do} \\ & \overline{\{\theta_a\}_{i=1}^n} \sim p(\theta) \\ & \overline{G}_n \leftarrow \nabla \mathcal{L}_{\operatorname{Liner}}\left(\frac{1}{n}\sum_{i=1}^n f(t(x_{adv}; \theta_i)), y\right) \\ & \overline{G}_n \leftarrow \nabla \mathcal{L}_{\operatorname{Liner}}\left(\frac{1}{n}\sum_{i=1}^n f(t(x_{adv}; \theta_i)), y\right) \\ & \text{for } b = 1 \text{ to } B \text{ do} \\ & v_b \leftarrow \mu_b \cdot v_b + \widehat{G}_n \\ & \text{end for} \\ & x_{adv} \leftarrow x_{adv} + \frac{\gamma}{B} \cdot \operatorname{Sign}\left(\sum_{b=1}^B v_b\right) \\ & \text{end for} \\ \end{array}
```

- \bullet Setting: non-convex, constrained SGD
- Attack success rate is highly correlated with variance of gradient estimates.
- Key is variance reduction.
- Linear loss on logits

```
 \begin{split} & \overline{\operatorname{Algorithm 1}} \text{ Our best attack on RT defenses} \\ & \overline{\operatorname{Inptt:}} \operatorname{Perturbation size } \epsilon, \operatorname{max.} \operatorname{PGD steps } T, \operatorname{step size} \{\gamma_t\}_{t=1}^T, \operatorname{and} \operatorname{AggMo's damping constants} \{\mu_b\}_{b=1}^B.\\ & \overline{\operatorname{Output:}} \operatorname{Adversarial examples } x_{adv} \\ & \overline{\operatorname{Data:}} \operatorname{Test input } x \operatorname{and its ground-truth label } y \\ & u \sim \mathcal{U}[-\epsilon, \epsilon], \quad x_{adv} \leftarrow x + u, \quad \{v_b\}_{b=1}^B \leftarrow \mathbf{0} \\ & \text{for } t = 1 \text{ to } T \text{ do} \\ & \overline{\{\theta_a\}_{i=1}^n} \sim p(\theta) \\ & \overline{G}_n \leftarrow \nabla \mathcal{L}_{\operatorname{Liner}}\left(\frac{1}{n}\sum_{i=1}^n f(t(x_{adv}; \theta_i)), y\right) \\ & \overline{G}_n \leftarrow \nabla \mathcal{L}_{\operatorname{Liner}}\left(\frac{1}{n}\sum_{i=1}^n f(t(x_{adv}; \theta_i)), y\right) \\ & \text{for } b = 1 \text{ to } B \text{ do} \\ & v_b \leftarrow \mu_b \cdot v_b + \widehat{G}_n \\ & \text{end for} \\ & x_{adv} \leftarrow x_{adv} + \frac{\gamma}{B} \cdot \operatorname{Sign}\left(\sum_{b=1}^B v_b\right) \\ & \text{end for} \\ \end{array}
```

- \bullet Setting: non-convex, constrained SGD
- Attack success rate is highly correlated with variance of gradient estimates.
- Key is variance reduction.
- Linear loss on logits
- Signed gradients and momentum

- \bullet Setting: non-convex, constrained SGD
- Attack success rate is highly correlated with variance of gradient estimates.
- Key is variance reduction.
- Linear loss on logits
- Signed gradients and momentum
- AggMo optimizer [Lucas et al., 2019]

- \bullet Setting: non-convex, constrained SGD
- Attack success rate is highly correlated with variance of gradient estimates.
- Key is variance reduction.
- Linear loss on logits
- Signed gradients and momentum
- AggMo optimizer [Lucas et al., 2019]
- Improve transferability (SGM [Wu et al., 2020])

Table 2: Comparison between the baseline attack, AutoAttack (standard version + EoT), and our attack on differentiable Random Transform Defense.

Attack	Αςςι	iracy
	CIFAR-10	Imagenette
No attack	81	89
Baseline	33	70
AutoAttack	61	85
Our attack	29	6

• Our attack beats the baseline (PGD+EoT) and AutoAttack by a large margin. Even a carefully tuned BaRT is not robust.

Table 2: Comparison between the baseline attack, AutoAttack (standard version + EoT), and our attack on differentiable Random Transform Defense.

Attack	Accuracy	
	CIFAR-10	Imagenette
No attack	81	89
Baseline	33	70
AutoAttack	61	85
Our attack	29	6

- Our attack beats the baseline (PGD+EoT) and AutoAttack by a large margin. Even a carefully tuned BaRT is not robust.
- We also use our attack to adversarially trained BaRT, but it is still not as robust as adversarial training on a deterministic network.

• Attacks on Random Transform Defense is much less efficient compared to deterministic models.

- Attacks on Random Transform Defense is much less efficient compared to deterministic models.
- For better attacks, try
 - Reducing variance of gradient estimates.
 - Using a lot of steps (at least a few thousands).
 - Using momentum and accelerated gradient methods when possible.

Thank You!

Come see our poster at Hall E #215 (Poster Session 1)!

э

- J. Lucas, S. Sun, R. Zemel, and R. Grosse. Aggregated momentum: Stability through passive damping. In *International Conference on Learning Representations*, 2019.
- E. Raff, J. Sylvester, S. Forsyth, and M. McLean. Barrage of random transforms for adversarially robust defense. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 6521–6530, Long Beach, CA, USA, June 2019. IEEE. ISBN 978-1-72813-293-8. doi: 10.1109/CVPR.2019.00669.
- D. Wu, Y. Wang, S.-T. Xia, J. Bailey, and X. Ma. Skip connections matter: On the transferability of adversarial examples generated with ResNets. In *International Conference on Learning Representations*, 2020.