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Motivation: Uncertainty in Causal Structures
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Bayesian Structure Learning

Model Express uncertainty using prior knowledge and data D:

p(G |D) ∝ p(D|G)p(G)

Goal Answer some query, typically of the form Ep(G|D)[f (G)]

Approximation Derive some approximation qφ(G) ≈ p(G |D), and
use q to estimate the query.
I Expressive family of distributions over acyclic directed

graphs G
I Tractable to answer the queries of interest
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How do we encode acyclicity?



Distributions over Directed Graphs

I Mean-field: qφ(G) ∝
∏d

i ,j=1 Bernoulli(Gij ;φij))
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I Does not consider
correlations due to
acyclicity;

I Not very expressive;

I Neural Autoregressive: qφ(G) ∝
∏d

i ,j=1 qφij (Gij |G<ij)
I Difficult to train to

encode acyclicity;
I Intractable (except for

sampling);
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DAG Distribution using Tractable Circuits

Orderings We work on the joint space of topological orders σ and
directed graphs G :

1 2

3 4

σ = {1, 2, 4, 3}

I Every DAG is consistent with at least one order;
I Every directed graph consistent with an order is acyclic;

Solution We introduce a parameterized distribution family
qφ(σ,G) for orders and graphs based on tractable probabilistic
circuits.
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Sum-Product Networks

Sum-Product Networks (SPNs) are a type of tractable probabilistic
model for expressing a distribution over a set of variables X .

SPNs are rooted DAGs consisting of three types of nodes:
I L: Simple base distributions L(X)
I ×: Factorize distributions, P(X) = C1(X1)× C2(X2)

×
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I +: Mix component distributions, S(X) =
∑

j φjCj(X)
+
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OrderSPNs

We introduce OrderSPNs, SPNs which express distributions over
orderings σ of a set {1, ..., d}.

I +: Mix different partitions of the order σ = (σ1, σ2)
+

{1, 2, 3, 4}

× × ×
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I ×: Factorize into independent P(σ) = C1(σ1)× C2(σ2)
×

{1, 2}{3, 4}

+ +
{1, 2} {3, 4}

Note that the order of the children of a product node does
matter!
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OrderSPNs

Alternate sum and product layers until order σ is fully determined:
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How does this relate to DAGs?
I L: (S, {i}) indicates that S precedes i in the ordering; thus

L(Gi ) = 0 if Gi * S, where Gi is the set of parents of node i .
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Are OrderSPNs a good approximation to the true
posterior?



Natural Approximation
OrderSPNs can be viewed as a hierarchical, width-limited
approximation to the true posterior.
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efficient heuristic subroutines.

I ×-nodes encode exact conditional independences in the
posterior.
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OrderSPNs: Coverage
Proposition
OrderSPNs can be exponentially more compact than a tabular
representation of orders/DAGs.



OrderSPNs: Empirical Analysis
Even if one chooses the partitions randomly, and only learns the
weights of the OrderSPN, it can outperform baselines on some
metrics.

Expected-SHD: Lower is better AUROC: Higher is better



The Benefits of Tractability



Tractable Queries

The tractability of SPNs depends on their structural properties.

Proposition
Regular OrderSPNs are complete and decomposable, and
deterministic.

Sampling Marginals Most
Likely

ELBO Causal
Effect

Mean-field 3 3 3 7 7
Autoregressive 3 7 7 7 7
EBM 7 7 7 7 7

3 3 3 3 3OrderSPN O(d2) O(M) O(M) O(M) O(d3M)
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Learning OrderSPN Weights

Variational inference is used to optimize the parameters:

ELBO = Eqφ(G)[log p(G |D)] + H(qφ(G))

I For existing variational families, this has to be estimated
through sampling and/or continuous relaxation

Proposition
The ELBO and its gradients for any regular OrderSPN qφ and
modular distribution p can be computed exactly in linear time in
the size of the SPN.

I Eliminates variance in the high-dimensional, discrete space
of graphs G , leading to stable optimization.
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Query Answering
Given approximate posterior qφ, we want to be able to extract
information about the system.
Let

∧
i ci be some feature of the causal graph, e.g. a set of edges.

I Sampling: Sample G ∼ qφ(σ,G |
∧

ci );
I Marginals: Evaluate qφ(

∧
c ′

i |
∧

ci );
I Most Likely: Evaluate maxG qφ(σ,G |

∧
ci );

I Linear Causal Effects: Evaluate Eqφ
[CE (i , j |G)];

No. Edges Method AUROC

4 Gadget 0.905 ± 0.073
Trust-g 0.903± 0.057

8 Gadget 0.888± 0.089
Trust-g 0.933 ± 0.048

16 Gadget 0.876± 0.081
Trust-g 0.957 ± 0.077
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Conclusion

I We present a novel, tractable representation for approximate
Bayesian structure learning.

I We compactly model distributions over DAGs and topological
orders using OrderSPNs, a novel type of tractable probabilistic
circuit.

I Tractability offers benefits both for optimizing the variational
objective, as well as in answering queries about the domain.
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Thank you!

Benjie
Wang

Matthew
Wicker

Marta
Kwiatkowska

Find out more at Poster #722!
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