Tractable Uncertainty for Structure Learning

Benjie Wang, Matthew Wicker, Marta Kwiatkowska

ICML 2022

 $CE(D, A) = b_{DB}b_{BF}b_{FA} + b_{DB}b_{BT}b_{TA}$

 $CE(D, A) = b_{DB}b_{BA} + b_{DF}b_{FT}b_{TA}$

CE(D, A) = 0

- What is the probability that Diabetes causes Amyloid Beta deposition?

- What is the probability that Diabetes causes Amyloid Beta deposition?
- What is the expected causal effect of Diabetes on Alzheimer's?

- What is the probability that Diabetes causes Amyloid Beta deposition?
- What is the expected causal effect of Diabetes on Alzheimer's?
- Given that Diabetes causes Amyloid Beta deposition, what is the expected causal effect?

Model Express uncertainty using prior knowledge and data \mathcal{D} :

 $p(G|\mathcal{D}) \propto p(\mathcal{D}|G)p(G)$

Model Express uncertainty using prior knowledge and data \mathcal{D} :

 $p(G|\mathcal{D}) \propto p(\mathcal{D}|G)p(G)$

Goal Answer some query, typically of the form $\mathbb{E}_{p(G|\mathcal{D})}[f(G)]$

Model Express uncertainty using prior knowledge and data \mathcal{D} :

 $p(G|\mathcal{D}) \propto p(\mathcal{D}|G)p(G)$

Goal Answer some query, typically of the form $\mathbb{E}_{p(G|\mathcal{D})}[f(G)]$

Approximation Derive some approximation $q_{\phi}(G) \approx p(G|\mathcal{D})$, and use q to estimate the query.

Model Express uncertainty using prior knowledge and data \mathcal{D} :

 $p(G|\mathcal{D}) \propto p(\mathcal{D}|G)p(G)$

Goal Answer some query, typically of the form $\mathbb{E}_{p(G|\mathcal{D})}[f(G)]$

Approximation Derive some approximation $q_{\phi}(G) \approx p(G|\mathcal{D})$, and use q to estimate the query.

 Expressive family of distributions over acyclic directed graphs G

Model Express uncertainty using prior knowledge and data \mathcal{D} :

 $p(G|\mathcal{D}) \propto p(\mathcal{D}|G)p(G)$

Goal Answer some query, typically of the form $\mathbb{E}_{p(G|\mathcal{D})}[f(G)]$

Approximation Derive some approximation $q_{\phi}(G) \approx p(G|\mathcal{D})$, and use q to estimate the query.

- Expressive family of distributions over acyclic directed graphs G
- Tractable to answer the queries of interest

How do we encode acyclicity?

▶ Neural Autoregressive: $q_{\phi}(G) \propto \prod_{i,j=1}^{d} q_{\phi_{ij}}(G_{ij}|G_{< ij})$

▶ Neural Autoregressive: $q_{\phi}(G) \propto \prod_{i,j=1}^{d} q_{\phi_{ij}}(G_{ij}|G_{<ij})$

 Difficult to train to encode acyclicity;

▶ Neural Autoregressive: $q_{\phi}(G) \propto \prod_{i,j=1}^{d} q_{\phi_{ij}}(G_{ij}|G_{<ij})$

- Difficult to train to encode acyclicity;
- Intractable (except for sampling);

DAG Distribution using Tractable Circuits

Orderings We work on the joint space of topological orders σ and directed graphs *G*:

- Every DAG is consistent with at least one order;
- Every directed graph consistent with an order is acyclic;

DAG Distribution using Tractable Circuits

Orderings We work on the joint space of topological orders σ and directed graphs *G*:

- Every DAG is consistent with at least one order;
- Every directed graph consistent with an order is acyclic;

Solution We introduce a parameterized distribution family $q_{\phi}(\sigma, G)$ for orders and graphs based on **tractable probabilistic circuits**.

Sum-Product Networks (SPNs) are a type of tractable probabilistic model for expressing a distribution over a set of variables X.

Sum-Product Networks (SPNs) are a type of tractable probabilistic model for expressing a distribution over a set of variables X.

SPNs are rooted DAGs consisting of three types of nodes:

► L: Simple **base** distributions *L*(**X**)

Sum-Product Networks (SPNs) are a type of tractable probabilistic model for expressing a distribution over a set of variables X.

SPNs are rooted DAGs consisting of three types of nodes:

- L: Simple base distributions L(X)
- X: Factorize distributions, $P(\mathbf{X}) = C_1(\mathbf{X}_1) \times C_2(\mathbf{X}_2)$

Sum-Product Networks (SPNs) are a type of tractable probabilistic model for expressing a distribution over a set of variables X.

SPNs are rooted DAGs consisting of three types of nodes:

- L: Simple base distributions L(X)
- X: Factorize distributions, $P(\mathbf{X}) = C_1(\mathbf{X}_1) \times C_2(\mathbf{X}_2)$

• +: Mix component distributions, $S(\mathbf{X}) = \sum_{j} \phi_{j} C_{j}(\mathbf{X})$

We introduce OrderSPNs, SPNs which express distributions over orderings σ of a set $\{1, ..., d\}$.

We introduce OrderSPNs, SPNs which express distributions over orderings σ of a set $\{1, ..., d\}$.

• +: Mix different partitions of the order $\sigma = (\sigma_1, \sigma_2)$

We introduce OrderSPNs, SPNs which express distributions over orderings σ of a set $\{1, ..., d\}$.

• +: Mix different partitions of the order $\sigma = (\sigma_1, \sigma_2)$

Note that the order of the children of a product node **does** matter!

Alternate sum and product layers until order σ is fully determined:

Alternate sum and product layers until order σ is fully determined:

How does this relate to DAGs?

▶ L: (S, {i}) indicates that *S* precedes *i* in the ordering; thus $L(G_i) = 0$ if $G_i \nsubseteq S$, where G_i is the set of parents of node *i*.

Are OrderSPNs a good approximation to the true posterior?

Natural Approximation

OrderSPNs can be viewed as a hierarchical, width-limited approximation to the true posterior.

Natural Approximation

OrderSPNs can be viewed as a hierarchical, width-limited approximation to the true posterior.

At +-nodes, select the active branches (partitions) using efficient heuristic subroutines.

Natural Approximation

OrderSPNs can be viewed as a hierarchical, width-limited approximation to the true posterior.

- At +-nodes, select the active branches (partitions) using efficient heuristic subroutines.
- ×-nodes encode exact conditional independences in the posterior.

OrderSPNs: Coverage

Proposition

OrderSPNs can be exponentially more compact than a tabular representation of orders/DAGs.

OrderSPNs: Empirical Analysis

Even if one chooses the partitions *randomly*, and only learns the weights of the OrderSPN, it can outperform baselines on some metrics.

The Benefits of Tractability

Tractable Queries

The tractability of SPNs depends on their structural properties.

Tractable Queries

The tractability of SPNs depends on their structural properties.

Proposition

Regular OrderSPNs are **complete** and **decomposable**, and **deterministic**.

Tractable Queries

The tractability of SPNs depends on their structural properties.

Proposition

Regular OrderSPNs are complete and decomposable, and deterministic.

	Sampling	Marginals	Most Likely	ELBO	Causal Effect
Mean-field	√	✓	√	X	×
Autoregressive	√	×	×	X	×
EBM	X	×	×	X	×
OrderSPN	✓	✓	✓	✓	✓
	O(d²)	O(M)	O(M)	O(M)	O(d ³ M)

Learning OrderSPN Weights

Variational inference is used to optimize the parameters:

$$ELBO = \mathbb{E}_{q_{\phi}(G)}[\log p(G|\mathcal{D})] + H(q_{\phi}(G))$$

 For existing variational families, this has to be estimated through sampling and/or continuous relaxation

Learning OrderSPN Weights

Variational inference is used to optimize the parameters:

$$ELBO = \mathbb{E}_{q_{\phi}(G)}[\log p(G|\mathcal{D})] + H(q_{\phi}(G))$$

 For existing variational families, this has to be estimated through sampling and/or continuous relaxation

Proposition

The ELBO and its gradients for any regular OrderSPN q_{ϕ} and modular distribution p can be computed **exactly** in linear time in the size of the SPN.

Eliminates variance in the high-dimensional, discrete space of graphs *G*, leading to stable optimization.

Given approximate posterior q_{ϕ} , we want to be able to extract information about the system.

Given approximate posterior q_{ϕ} , we want to be able to extract information about the system.

Let $\bigwedge_i c_i$ be some feature of the causal graph, e.g. a set of edges.

Sampling: Sample $G \sim q_{\phi}(\sigma, G| \wedge c_i)$;

Given approximate posterior q_{ϕ} , we want to be able to extract information about the system.

- **Sampling**: Sample $G \sim q_{\phi}(\sigma, G | \bigwedge c_i)$;
- Marginals: Evaluate $q_{\phi}(\bigwedge c'_i | \bigwedge c_i)$;

Given approximate posterior q_{ϕ} , we want to be able to extract information about the system.

- **Sampling**: Sample $G \sim q_{\phi}(\sigma, G| \wedge c_i)$;
- Marginals: Evaluate $q_{\phi}(\bigwedge c'_i | \bigwedge c_i)$;
- Most Likely: Evaluate $\max_G q_{\phi}(\sigma, G | \bigwedge c_i)$;

Given approximate posterior q_{ϕ} , we want to be able to extract information about the system.

- **Sampling**: Sample $G \sim q_{\phi}(\sigma, G | \bigwedge c_i)$;
- Marginals: Evaluate $q_{\phi}(\bigwedge c'_i | \bigwedge c_i)$;
- ▶ Most Likely: Evaluate $\max_G q_{\phi}(\sigma, G | \land c_i)$;
- ▶ Linear Causal Effects: Evaluate $\mathbb{E}_{q_{\phi}}[CE(i, j|G)];$

Given approximate posterior q_{ϕ} , we want to be able to extract information about the system.

- **Sampling**: Sample $G \sim q_{\phi}(\sigma, G | \bigwedge c_i)$;
- Marginals: Evaluate $q_{\phi}(\bigwedge c'_i | \bigwedge c_i)$;
- Most Likely: Evaluate max_G $q_{\phi}(\sigma, G | \bigwedge c_i)$;
- **Linear Causal Effects**: Evaluate $\mathbb{E}_{q_{\phi}}[CE(i, j|G)];$

No. Edges	Method	AUROC
4	Gadget Trust-g	$\begin{array}{c} \textbf{0.905} \pm \textbf{0.073} \\ \textbf{0.903} \pm \textbf{0.057} \end{array}$
8	Gadget Trust-g	$\begin{array}{c} 0.888 \pm 0.089 \\ \textbf{0.933} \pm \textbf{0.048} \end{array}$
16	Gadget Trust-g	$\begin{array}{c} 0.876 \pm 0.081 \\ \textbf{0.957} \pm \textbf{0.077} \end{array}$

We present a novel, tractable representation for approximate Bayesian structure learning.

Conclusion

- We present a novel, tractable representation for approximate Bayesian structure learning.
- We compactly model distributions over DAGs and topological orders using OrderSPNs, a novel type of tractable probabilistic circuit.

Conclusion

- We present a novel, tractable representation for approximate Bayesian structure learning.
- We compactly model distributions over DAGs and topological orders using OrderSPNs, a novel type of tractable probabilistic circuit.
- Tractability offers benefits both for optimizing the variational objective, as well as in answering queries about the domain.

Thank you!

Benjie Wang Matthew Wicker Marta Kwiatkowska

Find out more at Poster #722!