
Evaluating the
Adversarial Robustness of

Adaptive Test-Time Defenses

Francesco Croce*, Sven Gowal*,
Thomas Brunner*, Evan Shelhamer*

Matthias Hein, Taylan Cemgil

Adversarial Robustness: Non-Adaptive Defenses

=

ÿÿ% tabby cat ĀĀ% guacamole

in

Deep nets are vulnerable to adversarial attacks: small input (x) perturbations (𝜹) that result in errors

● Train-Time Defenses: devise models, losses, …, and optimization algorithms for training
classifier, e.g. adversarial training (Madry et al., ù÷øÿ). They are static and do not change
during testing

● Test-Time Defenses: alter inference during testing by altering the input x or model, e.g.
test-time data augmentation. While these alter inference, they do not adapt, as their
alterations do not depend on the input

illustration credit: Athalye and Carlini

Adaptive test-time defenses

● alter inference and condition their changes on the input by optimization

● iteratively update (during inference) the input x or parameters 𝜃 of the network to improve
robustness to adversarial attack

Potential benefits

● preserving clean accuracy, by adapting differently to natural inputs and attacked inputs,
unlike train-time defenses

● improving robust accuracy, by changing the defense as a function of the attack,
unlike non-adaptive test-time defenses

Note: Test-time adaptation has already shown improvement for natural shifts, so why not adversarial?
(Sun et al. ICLR'ù÷, Schneider et al. NeurIPS'ù÷, Wang et al. ICLR'ùø, …)

Adaptive Test-Time Defenses

input adaptation or "purification"
optimizes the input then passes it to the
model.

model adaptation or "test-time training"
optimizes the parameters or latents of
the model.

Paradigms of Adaptive Defenses

Both paradigms update by iterative optimization during testing

Elements of Adaptive Defenses

iteration (I) iteratively updating test-time optimization problems by e.g. gradient descent

auxiliary networks (AN) equipping the model with another network to define the loss or update for optimization

randomization (R) randomizing explicitly, by adding noise, or implicitly, by sampling data

external data (ED) exploiting additional data for prediction, so that it does not depend solely on test inputs

iteration (I) iteratively updating test-time optimization problems by e.g. gradient descent

auxiliary networks (AN) equipping the model with another network to define the loss or update for optimization

randomization (R) randomizing explicitly, by adding noise, or implicitly, by sampling data

external data (ED) exploiting additional data for prediction, so that it does not depend solely on test inputs

Elements of Adaptive Defenses: Iteration

gradient iteration model iteration

Elements of Adaptive Defenses: Auxiliary Networks

iteration (I) iteratively updating test-time optimization problems by e.g. gradient descent

auxiliary networks (AN) equipping the model with another network to define the loss or update for optimization

randomization (R) randomizing explicitly, by adding noise, or implicitly, by sampling data

external data (ED) exploiting additional data for prediction, so that it does not depend solely on test inputs

ø. update ù. generate ú. loss (input) ø. loss (model)

classifier auxiliary network

Elements of Adaptive Defenses: Randomization

explicit: adding noise implicit: sampling for batching

data batch #ø batch #ù

iteration (I) iteratively updating test-time optimization problems by e.g. gradient descent

auxiliary networks (AN) equipping the model with another network to define the loss or update for optimization

randomization (R) randomizing explicitly, by adding noise, or implicitly, by sampling data

external data (ED) exploiting additional data for prediction, so that it does not depend solely on test inputs

Elements of Adaptive Defenses: External Data

test input

private inputs

ÿÿ% tabby cat

model

iteration (I) iteratively updating test-time optimization problems by e.g. gradient descent

auxiliary networks (AN) equipping the model with another network to define the loss or update for optimization

randomization (R) randomizing explicitly, by adding noise, or implicitly, by sampling data

external data (ED) exploiting additional data for prediction, so that it does not depend solely on test inputs

Case Study: Summary of Results

Our evaluation of the studied adaptive defenses on CIFAR-ø÷, Linf-threat model, ε=ÿ/ùüü
I = Input Adaptation, M = Model Adaptation IA = Iterative Algorithm, AN = Auxiliary Network, R = Randomization, ED = Extra Data

Defense Venue Paradigm
 I M

Elements
 IA AN R ED

Attack Robust Accuracy
Theirs / Ours (Base)

Inference
Time

Kang et al. '21 NeurIPS Transfer APGD 57.8 / 52.2 (53.9) ùx

Chen et al. '21* ICLR APGD+BPDA 34.5*/ 5.6 (0.0) üĀx

Wu et al. '21 arXiv Transfer
APGD+BPDA+EoT 65.7 / 61.0 (63.0) ûýx

Alfarra et al. '22 AAAI RayS 79.2 / 66.6 (66.6) ÿx

Shi et al. '21 ICLR APGD+BPDA* 51.0 / 3.7 (0.0) üøÿx

Qian et al. '21 arXiv APGD 65.1 / 12.6 (7.7) ûx

Hwang et al. '21 ICMLW APGD+BPDA 52.7 / 43.8 (49.3) û÷x

Mao et al. '21** ICCV APGD+EoT 63.8 / 58.4 (59.4) û÷þx

Yoon et al. '21 ICML APGD+EoT 69.7 / 33.7 (0.0) øþýx

* Chen et al.: this paper and our evaluation use ε=ù/ùüü. ** Mao et al.: our evaluation uses batch size ü÷, and not the original üøù, for computational reasons.

Case Study: results and observations

● Complex defenses are often more difficult to evaluate (Tramèr, arXiv'ù÷)

● There is not a single evaluation method which works across all defenses, but we combine
several existing techniques, depending on the characteristics of the defense

● Adaptive test-time defenses that make use of a robust static model
do not improve its robustness, and often degrade it

● Adaptive test-time defenses using a nominal, non-robust static model
might yield some robustness, but less than the degree obtained by
e.g. adversarial training

● Test-time adaptation increases inference time by multiplicative factors,
or even orders of magnitude(!)

https://arxiv.org/abs/2002.08347

Best Practices for Attacking Adaptive Defenses

● Transfer attacks from the static defense to the adaptive defense

● Evaluate by gradient-based attacks on the full defense when possible (e.g. APGD
+iterations +multiple losses +multiple restarts) – current frameworks like JAX and PyTorch
enable easy gradient computation

● Evaluate the defense with score-based and decision-based black-box attacks

● Approximate non-differentiable components by BPDA (either with identity or more
complex functions) and attack randomization by EoT

● Remember that attacks developed for static classifiers, e.g. AutoAttack,
might be not effective in presence of test-time adaptation (but can provide a baseline)

