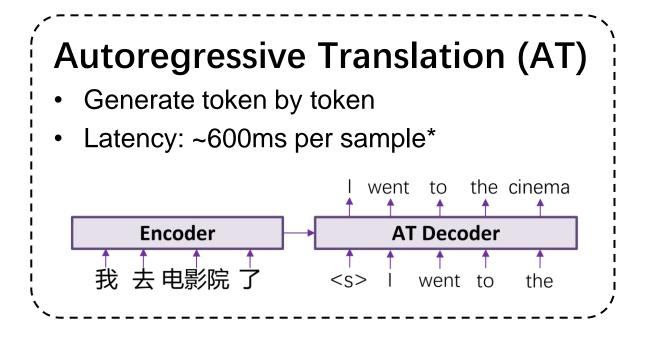
Directed Acyclic Transformer for Non-Autoregressive Machine Translation

Fei Huang, Hao Zhou, Yang Liu, Hang Li, Minlie Huang

CoAl group, Tsinghua University

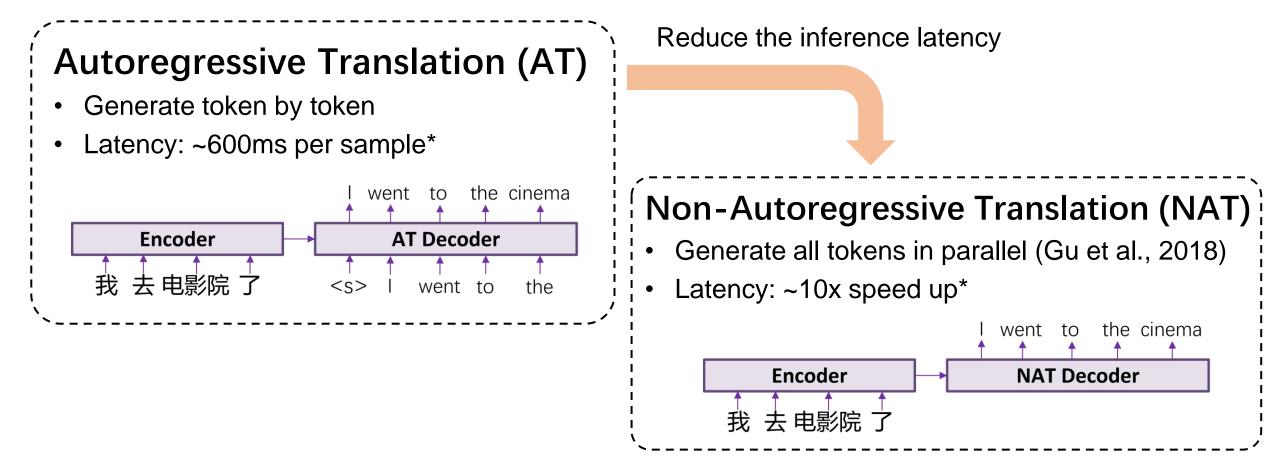
ByteDance AI Lab

Background



*: Reported by Gu et al. *Non-autoregressive Machine Translation*. ICLR2018. The latency is evaluated on IWLST16 En-De with batch size=1 on a Nvidia Tesla P100

Background

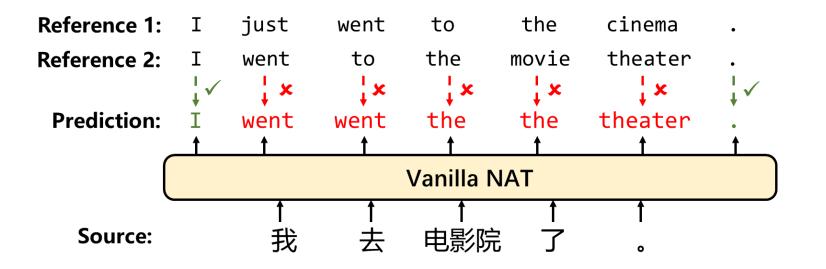


*: Reported by Gu et al. *Non-autoregressive Machine Translation*. ICLR2018. The latency is evaluated on IWLST16 En-De with batch size=1 on a Nvidia Tesla P100

2

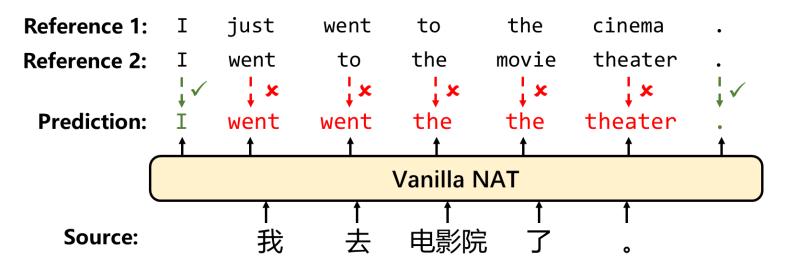
Challenges in NAT

- Multi-modality Problem:
 - NATs produce incorrect outputs that mix multiple possible translations



Challenges in NAT

- Multi-modality Problem:
 - NATs produce incorrect outputs that mix multiple possible translations

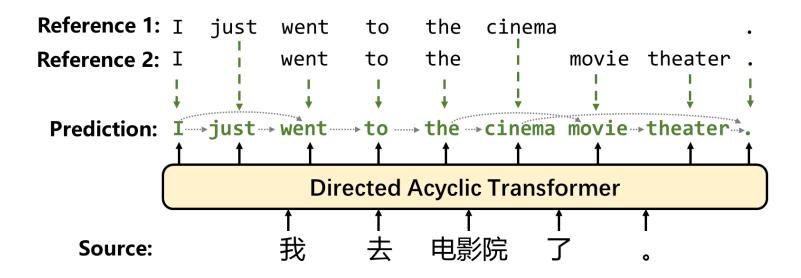


- Two causes:
 - **Training**: inconsistent labels in the reference sentences
 - Inference: cannot preserve correct lexical dependencies during inference

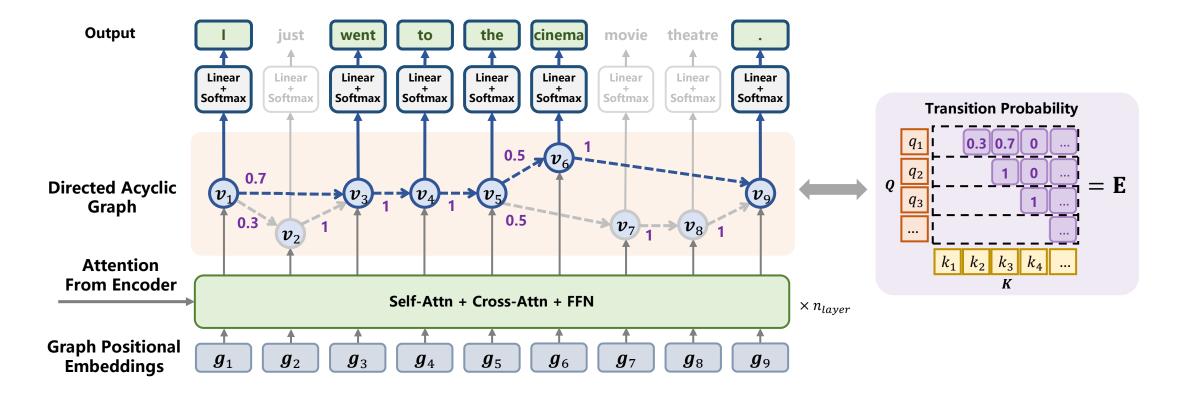
4

Our Proposed Method

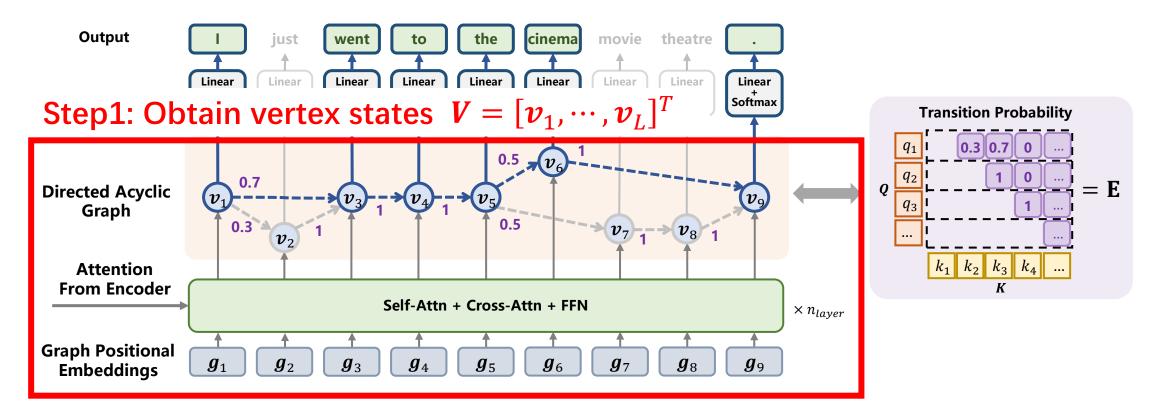
- Utilize Directed Acyclic Graph (DAG)
 - to organize the decoding hidden states (and predicted tokens)



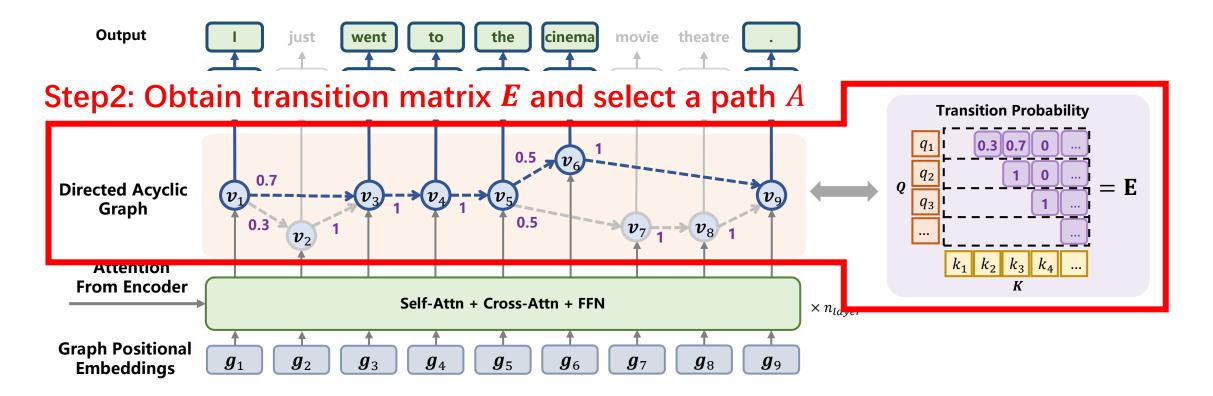
- In training: alleviate conflicts by assigning tokens to different vertices
- In inference: recover the translation following predicted transitions



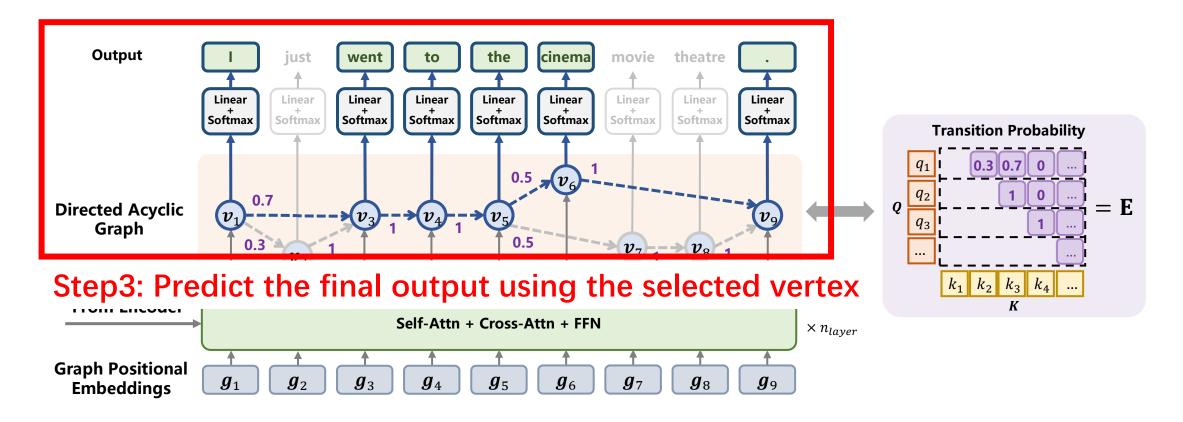
Reference Y = I went to the cinema .



Reference Y = I went to the cinema .



Reference Y = I went to the cinema .



Reference Y = I went to the cinema .

DA-Transformer – Training & Inference

Training with only one reference

$$\mathcal{L} = -\log P_{\theta}(Y|X) = -\log \sum_{A \in \Gamma} P_{\theta}(Y, A|X)$$

- Use dynamic programming to do the marginalization
- We find that the objective can avoid inconsistent labels by **assigning a single reference to several paths sparsely**
- The whole DAG can be learned across different training instances
- Inference with various decoding strategies on the DAG
 - Greedy / Lookahead Decoding / Beam Search

Main Results

Model	Iter #	Avg G Raw	ap↓ KD	Speedup
Transformer (Vaswani et al., 2017)	$egin{array}{c} M \ M \end{array}$	0.45	0.49	1.0x
Transformer (Ours)		0	0	1.0x
CMLM (Ghazvininejad et al., 2019)	$ \begin{array}{c} 10 \\ 10 \\ \approx 4 \\ 8 \\ 10 \end{array} $	3.00	1.37	2.2x
SMART (Ghazvininejad et al., 2020b)		2.67	0.67	2.2x
DisCo (Kasai et al., 2020)		2.43	0.59	3.5x
Imputer (Saharia et al., 2020)		3.07	0.04	2.7x
CMLMC (Anonymous, 2021a)		1.35	0.15	1.7x
Vanilla NAT (Gu et al., 2018) AXE^{\dagger} (Ghazvininejad et al., 2020a) CTC (Libovický & Helcl, 2018) GLAT (Qian et al., 2021a) OaXE [†] (Du et al., 2021) CTC + GLAT (Qian et al., 2021a) CTC + DSLP (Huang et al., 2021)	1 1 1 1 1 1	15.78 7.36 9.41 6.05 5.4 3.52 3.44	8.26 4.34 3.47 2.59 2.0 1.98 0.73	15.3x 14.2x 14.6x 15.3x 14.2x 14.6x 14.0x
DA-Transformer + Greedy (Ours)	1	1.47	0.75	14.0x
+ Lookahead	1	1.20	0.58	13.9x
+ BeamSearch	1	0.61	0.18	7.1x
+ BeamSearch + 5-gram LM	1	0.30	0.05	7.0x

1. DA-Transformer outperforms existing **non-iterative NATs by 2~3 BLEU** with competitive latency speedup when Knowledge Distillation is not applied.

DA-Transformer reduces the average gap against the AT to <0.30 BLEU, while achieving 7x~14x speedups.

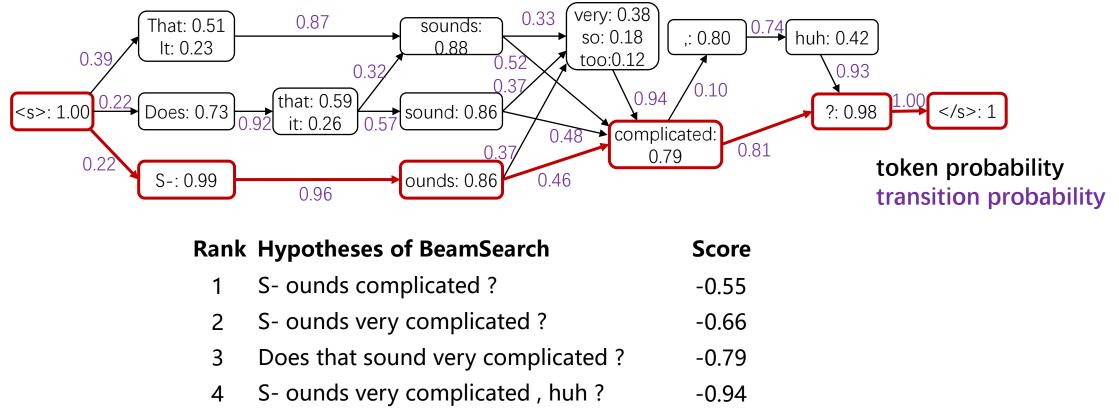
Part of Table1 Avg Gap = BLEU gap against the best AT averaged on WMT14 En↔De and WMT17 Zh↔En

Case Study

Source: 听起来很复杂? **Reference:** S- ounds tricky?

Vanilla NAT: It ounds sounds complicated ?

DA-Transformer:



Other Results & Analysis

- DA-Transformer effectively improves the token prediction accuracy
- DA-Transformer facilitates diverse generation
- DA-Transformer provides flexible quality-speed tradeoff by tuning graph size, decoding method

Thanks for Your Attention

GitHub (code): <u>https://github.com/thu-coai/DA-Transformer</u>

If you are interested, welcome to see our other paper at ICML2022! On the Learning of Non-Autoregressive Transformer

CoAI group, Tsinghua University

ByteDance AI Lab