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Background
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Autoregressive Translation (AT)
• Generate token by token

• Latency: ~600ms per sample*

*: Reported by Gu et al. Non-autoregressive Machine Translation. ICLR2018.
The latency is evaluated on IWLST16 En-De with batch size=1 on a Nvidia Tesla P100



Background
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Autoregressive Translation (AT)
• Generate token by token

• Latency: ~600ms per sample*

Non-Autoregressive Translation (NAT)
• Generate all tokens in parallel (Gu et al., 2018)

• Latency: ~10x speed up*

*: Reported by Gu et al. Non-autoregressive Machine Translation. ICLR2018.
The latency is evaluated on IWLST16 En-De with batch size=1 on a Nvidia Tesla P100

Reduce the inference latency



Challenges in NAT
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• Multi-modality Problem:
• NATs produce incorrect outputs that mix multiple possible translations



Challenges in NAT
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• Multi-modality Problem:
• NATs produce incorrect outputs that mix multiple possible translations

• Two causes:
• Training:  inconsistent labels in the reference sentences
• Inference: cannot preserve correct lexical dependencies during inference



Our Proposed Method
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• Utilize Directed Acyclic Graph (DAG)
• to organize the decoding hidden states (and predicted tokens)

• In training: alleviate conflicts by assigning tokens to different vertices
• In inference: recover the translation following predicted transitions



Directed Acyclic Transformer (DA-Transformer)
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Directed Acyclic Transformer (DA-Transformer)
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Step1: Obtain vertex states  𝑽 = 𝒗1, ⋯ , 𝒗𝐿
𝑇



Directed Acyclic Transformer (DA-Transformer)
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Step2: Obtain transition matrix 𝑬 and select a path 𝐴
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Step3: Predict the final output using the selected vertex



DA-Transformer – Training & Inference
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• Training with only one reference

• Use dynamic programming to do the marginalization

• We find that the objective can avoid inconsistent labels by assigning a single 
reference to several paths sparsely

• The whole DAG can be learned across different training instances

• Inference with various decoding strategies on the DAG
• Greedy / Lookahead Decoding / Beam Search



Main Results

11

1. DA-Transformer outperforms existing 
non-iterative NATs by 2~3 BLEU with 
competitive latency speedup when 
Knowledge Distillation is not applied.

2. DA-Transformer reduces the 
average gap against the AT to <0.30 
BLEU, while achieving 7x~14x 
speedups.

Part of Table1
Avg Gap = BLEU gap against the best AT averaged on

WMT14 En↔De  and WMT17 Zh↔En



Case Study
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Other Results & Analysis
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• DA-Transformer effectively improves the token prediction 
accuracy

• DA-Transformer facilitates diverse generation

• DA-Transformer provides flexible quality-speed tradeoff by 
tuning graph size, decoding method



Thanks for Your Attention

GitHub (code): https://github.com/thu-coai/DA-Transformer

CoAI group, Tsinghua University ByteDance AI Lab

If you are interested, welcome to see our other paper at ICML2022!

On the Learning of Non-Autoregressive Transformer

https://github.com/thu-coai/DA-Transformer

