Training Characteristic Functions with Reinforcement Learning

Stephan Wäldchen, Felix Huber, Sebastian Pokutta

Zuse Institut Berlin

39th International Conference on Machine Learning July 17 – 23, 2022

► Core idea: Probe black-box function with different inputs

- ▶ Core idea: Probe black-box function with different inputs
- ► Local interpretation (for specific input x): vary features

- ▶ Core idea: Probe black-box function with different inputs
- ► Local interpretation (for specific input **x**): vary features

Prediction probabilities

Text with highlighted words

Why does the **older** generation think that just because they don't understand video games and technology, they feel like they have to hate them and blame every bad thing on them?

LIME saliency¹

^{1) &}quot;Explainable ai: A review of machine learning interpretability methods", Linardatos et al. [7]

- ▶ Core idea: Probe black-box function with different inputs
- ► Local interpretation (for specific input **x**): vary features
- ML: Saliency \leftrightarrow Coop. Game Theory: Surplus Attribution

Text with highlighted words

Why does the **older** generation think that just because they don't understand video games and technology, they feel like they have to hate them and blame every bad thing on them?

LIME saliency¹

^{1) &}quot;Explainable ai: A review of machine learning interpretability methods", Linardatos et al. [7]

- ▶ Core idea: Probe black-box function with different inputs
- ► Local interpretation (for specific input **x**): vary features
- ML: Saliency \leftrightarrow Coop. Game Theory: Surplus Attribution
- ▶ Characteristic function: $\nu: 2^{[d]} \to \mathbb{R}$

Text with highlighted words

Why does the **older** generation think that just because they don't understand video games and technology, they feel like they have to hate them and blame every bad thing on them?

LIME saliency¹

^{1) &}quot;Explainable ai: A review of machine learning interpretability methods", Linardatos et al. [7]

- ▶ Core idea: Probe black-box function with different inputs
- ► Local interpretation (for specific input **x**): vary features
- \blacktriangleright ML: Saliency \leftrightarrow Coop. Game Theory: Surplus Attribution
- ▶ Characteristic function: $\nu: 2^{[d]} \to \mathbb{R}$

Text with highlighted words

Why does the **older** generation think that just because they don't understand video games and technology, they feel like they have to hate them and blame every bad thing on them?

LIME saliency¹

Source: https://clearcode.cc/blog/game-theory-attribution/

\$4 \$6

- ▶ Core idea: Probe black-box function with different inputs
- ► Local interpretation (for specific input x): vary features
- \blacktriangleright ML: Saliency \leftrightarrow Coop. Game Theory: Surplus Attribution
- Characteristic function: $\nu: 2^{[d]} \to \mathbb{R}$
- ▶ Prime Implicant Explanation² (mostly for $\nu : 2^{[d]} \rightarrow \{0,1\}$)

$$S^* = \operatorname*{argmin}_{S \subset [d]} |S|$$
 s.t. $u(S) =
u([d])$

Source: https://clearcode.cc/blog/game-theory-attribution,

^{1) &}quot;Explainable ai: A review of machine learning interpretability methods", Linardatos et al. [7] 2) "A symbolic approach to explaining bayesian network classifiers", Shih et al. [13]

Source: https://clearcode.cc/blog/game-theory-attribution/

- Core idea: Probe black-box function with different inputs
- ► Local interpretation (for specific input x): vary features
- \blacktriangleright ML: Saliency \leftrightarrow Coop. Game Theory: Surplus Attribution
- ▶ Characteristic function: $\nu: 2^{[d]} \to \mathbb{R}$
- Prime Implicant Explanation² (mostly for $\nu : 2^{[d]} \rightarrow \{0, 1\}$)

$$S^* = \operatorname*{argmin}_{S \subset [d]} |S|$$
 s.t. $u(S) =
u([d])$

► Shapley Values³ (linear, efficient, symmetric, null-player)

$$\phi_i = \frac{1}{d!} \sum_{\pi \in \Pi([d])} (\nu(P_i^{\pi} \cup \{i\}) - \nu(P_i^{\pi})).$$

1/15

^{1) &}quot;Explainable ai: A review of machine learning interpretability methods", Linardatos et al. [7] 2) "A symbolic approach to explaining bayesian network classifiers", Shih et al. [13] 3) "A value for n-person games" Shapley [12]

- Core idea: Probe black-box function with different inputs
- Local interpretation (for specific input **x**): vary features
- ML: Saliency \leftrightarrow Coop. Game Theory: Surplus Attribution
- Characteristic function: $\nu: 2^{[d]} \to \mathbb{R}$
- Prime Implicant Explanation² (mostly for $\nu : 2^{[d]} \rightarrow \{0, 1\}$)

$$S^* = \operatorname*{argmin}_{S \subset [d]} |S|$$
 s.t. $u(S) =
u([d])$

► Shapley Values³ (linear, efficient, symmetric, null-player)

$$\phi_i = \frac{1}{d!} \sum_{\pi \in \Pi([d])} (\nu(P_i^{\pi} \cup \{i\}) - \nu(P_i^{\pi})).$$

Problem: We don't have characteristic functions!

^{1) &}quot;Explainable ai: A review of machine learning interpretability methods", Linardatos et al. [7] 2) "A symbolic approach to explaining bayesian network classifiers", Shih et al. [13] 3) "A value for n-person games" Shapley [12]

$$u_{\Phi,\mathbf{x}}(S) = \mathbb{E}_{\mathbf{y}}[\Phi(\mathbf{y}) \,|\, \mathbf{y}_S = \mathbf{x}_S] = \int \Phi(\mathbf{x}) \mathrm{d}\mathbb{P}[\mathbf{x}_{S^c} | \mathbf{x}_S].$$

^{1) &}quot;A unified approach to interpreting model predictions", Lundberg et al, [8]

$$\nu_{\Phi,\mathbf{x}}(S) = \mathbb{E}_{\mathbf{y}}[\Phi(\mathbf{y}) \,|\, \mathbf{y}_{S} = \mathbf{x}_{S}] = \int \Phi(\mathbf{x}) \mathrm{d}\mathbb{P}[\mathbf{x}_{S^{c}} | \mathbf{x}_{S}].$$

▶ Needs good model of $\mathbb{P}[\mathbf{x}_{S^c} | \mathbf{x}_S]!$

^{1) &}quot;A unified approach to interpreting model predictions", Lundberg et al, [8]

$$u_{\Phi,\mathbf{x}}(S) = \mathbb{E}_{\mathbf{y}}[\Phi(\mathbf{y}) \,|\, \mathbf{y}_S = \mathbf{x}_S] = \int \Phi(\mathbf{x}) \mathrm{d}\mathbb{P}[\mathbf{x}_{S^c} | \mathbf{x}_S].$$

- ▶ Needs good model of $\mathbb{P}[\mathbf{x}_{S^c} | \mathbf{x}_S]!$
- Most methods simply approximate with baseline values (sometimes layer-wise)

^{1) &}quot;A unified approach to interpreting model predictions", Lundberg et al, [8]

$$u_{\Phi,\mathbf{x}}(S) = \mathbb{E}_{\mathbf{y}}[\Phi(\mathbf{y}) \,|\, \mathbf{y}_S = \mathbf{x}_S] = \int \Phi(\mathbf{x}) \mathrm{d}\mathbb{P}[\mathbf{x}_{S^c} | \mathbf{x}_S].$$

- Needs good model of $\mathbb{P}[\mathbf{x}_{S^c} | \mathbf{x}_S]!$
- Most methods simply approximate with baseline values (sometimes layer-wise)
- Change off-manifold behaviour to manipulate: Gradient, Integrated gradients^{2,3}, LRP^{2,4,7}, LIME^{3,5}, DeepShap^{3,5}, Grad-Cam⁷, Shapley-based⁶, Counterfactual explanations⁸,

 [&]quot;A unified approach to interpreting model predictions", Lundberg et al. [8] 2) "Fairwashing explanations with off-manifold detergent", Anders et al. [1] 3) "You Shouldn't Trust Me: Learning Models Which Conceal Unfairness From Multiple Explanation Methods", Dimanov et al. [3] 4) "Explanations can be manipulated and geometry is to blame" Dombrowski et al. [4] 5) "Fooling lime and shap: Adversarial attacks on post hoc explanation methods", Slack et al. [14] 6) "Shapley explainability on the data manifold", Frye et al. [5] 7) "Fooling neural network interpretations via adversarial model manipulation" Heo et al. [6] 8) "Counterfactual Explanations Can Be Manipulated" Slack et al. [15]

Interpretations Rely on a Model of the Data Manifold

► Approach from Lundberg et al¹:

$$\nu_{\Phi,\mathbf{x}}(S) = \mathbb{E}_{\mathbf{y}}[\Phi(\mathbf{y}) \,|\, \mathbf{y}_{S} = \mathbf{x}_{S}] = \int \Phi(\mathbf{x}) d\mathbb{P}[\mathbf{x}_{S^{c}} | \mathbf{x}_{S}]$$

- Needs good model of $\mathbb{P}[\mathbf{x}_{S^c} | \mathbf{x}_S]!$
- Most methods simply approximate with baseline values (sometimes layer-wise)
- Change off-manifold behaviour to manipulate: Gradient, Integrated gradients^{2,3}, LRP^{2,4,7}, LIME^{3,5}, DeepShap^{3,5}, Grad-Cam⁷, Shapley-based⁶, Counterfactual explanations⁸,

Best Performer RDE creates new features!⁸

^{1) &}quot;A unified approach to interpreting model predictions", Lundberg et al. [8] 2) "Fairwashing explanations with off-manifold detergent", Anders et al. [1] 3) "You Shouldn't Trust Me: Learning Models Which Conceal Unfairness From Multiple Explanation Methods", Dimanov et al. [3] 4) "Explanations can be manipulated and geometry is to blame" Dombrowski et al. [4] 5) "Fooling lime and shap: Adversarial attacks on post hoc explanation methods", Slack et al. [14] 6) "Shapley explainability on the data manifold", Frye et al. [5] 7) "Fooling neural network interpretations via adversarial model manipulation" Heo et al. [6] 8) "Counterfactual Explanations Can Be Manipulated" Slack et al. [15] 9) "Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings", Macdonald et al. [9]

Interpretations Rely on a Model of the Data Manifold

► Approach from Lundberg et al¹:

$$\nu_{\Phi,\mathbf{x}}(S) = \mathbb{E}_{\mathbf{y}}[\Phi(\mathbf{y}) \,|\, \mathbf{y}_{S} = \mathbf{x}_{S}] = \int \Phi(\mathbf{x}) d\mathbb{P}[\mathbf{x}_{S^{c}} | \mathbf{x}_{S}]$$

- ▶ Needs good model of $\mathbb{P}[\mathbf{x}_{S^c} | \mathbf{x}_S]!$
- Most methods simply approximate with baseline values (sometimes layer-wise)
- Change off-manifold behaviour to manipulate: Gradient, Integrated gradients^{2,3}, LRP^{2,4,7}, LIME^{3,5}, DeepShap^{3,5}, Grad-Cam⁷, Shapley-based⁶, Counterfactual explanations⁸,

► Idea: Directly train a characteristic function!

^{1) &}quot;A unified approach to interpreting model predictions", Lundberg et al. [8] 2) "Fairwashing explanations with off-manifold detergent", Anders et al. [1] 3) "You Shouldn't Trust Me: Learning Models Which Conceal Unfairness From Multiple Explanation Methods", Dimanov et al. [3] 4) "Explanations can be manipulated and geometry is to blame" Dombrowski et al. [4] 5) "Fooling lime and shap: Adversarial attacks on post hoc explanation methods", Slack et al. [14] 6) "Shapley explainability on the data manifold", Frye et al. [5] 7) "Fooling neural network interpretations via adversarial model manipulation" Heo et al. [6] 8) "Counterfactual Explanations Can Be Manipulated" Slack et al. [15] 9) "Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings", Macdonald et al. [9]

► Abstract Games: complex, yet low-dimensional

^{1) &}quot;Proximal policy optimization algorithms", Schulman et al [11] 2) "Reinforcement Learning for Two-Player Zero-Sum Games", Crespo [2]

ICML 2022 (Stephan Wäldchen)

► Abstract Games: complex, yet low-dimensional

1) "Proximal policy optimization algorithms", Schulman et al [11] 2) "Reinforcement Learning for Two-Player Zero-Sum Games", Crespo [2]

ZIB

- ► Abstract Games: complex, yet low-dimensional
- Every turn $t: p_h \sim \mathcal{U}([0, p_h^{\max}])$

1) "Proximal policy optimization algorithms", Schulman et al [11] 2) "Reinforcement Learning for Two-Player Zero-Sum Games", Crespo [2]

- ► Abstract Games: complex, yet low-dimensional
- Every turn $t: p_h \sim \mathcal{U}([0, p_h^{\max}])$
- ▶ Hide $\lfloor p_h t \rfloor$ colour features at random

1) "Proximal policy optimization algorithms", Schulman et al [11] 2) "Reinforcement Learning for Two-Player Zero-Sum Games", Crespo [2]

- ► Abstract Games: complex, yet low-dimensional
- Every turn $t: p_h \sim \mathcal{U}([0, p_h^{\max}])$
- ▶ Hide $\lfloor p_h t \rfloor$ colour features at random

^{1) &}quot;Proximal policy optimization algorithms", Schulman et al [11] 2) "Reinforcement Learning for Two-Player Zero-Sum Games", Crespo [2]

ICML 2022 (Stephan Wäldchen)

- ► Abstract Games: complex, yet low-dimensional
- Every turn $t: p_h \sim \mathcal{U}([0, p_h^{\max}])$
- ▶ Hide $\lfloor p_h t \rfloor$ colour features at random
- ▶ Train agent with Proximal Policy Optimisation (PPO)^{1,2}

^{1) &}quot;Proximal policy optimization algorithms", Schulman et al [11] 2) "Reinforcement Learning for Two-Player Zero-Sum Games", Crespo [2]

ICML 2022 (Stephan Wäldchen)

- ► Abstract Games: complex, yet low-dimensional
- Every turn $t: p_h \sim \mathcal{U}([0, p_h^{\max}])$
- ▶ Hide $\lfloor p_h t \rfloor$ colour features at random
- ▶ Train agent with Proximal Policy Optimisation (PPO)^{1,2}

♦ FI: Full Information.

^{1) &}quot;Proximal policy optimization algorithms", Schulman et al [11] 2) "Reinforcement Learning for Two-Player Zero-Sum Games", Crespo [2]

ICML 2022 (Stephan Wäldchen)

- ► Abstract Games: complex, yet low-dimensional
- Every turn $t: p_h \sim \mathcal{U}([0, p_h^{\max}])$
- ▶ Hide $\lfloor p_h t \rfloor$ colour features at random
- ▶ Train agent with Proximal Policy Optimisation (PPO)^{1,2}

- FI: Full Information.
- PI-50: with $p_h \sim \mathcal{U}([0, 0.5])$

^{1) &}quot;Proximal policy optimization algorithms", Schulman et al [11] 2) "Reinforcement Learning for Two-Player Zero-Sum Games", Crespo [2]

ICML 2022 (Stephan Wäldchen)

- ► Abstract Games: complex, yet low-dimensional
- Every turn $t: p_h \sim \mathcal{U}([0, p_h^{\max}])$
- ▶ Hide $\lfloor p_h t \rfloor$ colour features at random
- ▶ Train agent with Proximal Policy Optimisation (PPO)^{1,2}

- FI: Full Information.
- PI-50: with $p_h \sim \mathcal{U}([0, 0.5])$
- PI-100: with $p_h \sim \mathcal{U}([0,1])$

^{1) &}quot;Proximal policy optimization algorithms", Schulman et al [11] 2) "Reinforcement Learning for Two-Player Zero-Sum Games", Crespo [2]

ICML 2022 (Stephan Wäldchen)

- ▶ Abstract Games: complex, yet low-dimensional
- Every turn $t: p_h \sim \mathcal{U}([0, p_h^{\max}])$
- ▶ Hide $\lfloor p_h t \rfloor$ colour features at random
- ▶ Train agent with Proximal Policy Optimisation (PPO)^{1,2}

- FI: Full Information.
- PI-50: with $p_h \sim \mathcal{U}([0, 0.5])$
- PI-100: with $p_h \sim \mathcal{U}([0,1])$

^{1) &}quot;Proximal policy optimization algorithms", Schulman et al [11] 2) "Reinforcement Learning for Two-Player Zero-Sum Games", Crespo [2]

ICML 2022 (Stephan Wäldchen)

ZIB

- ► Abstract Games: complex, yet low-dimensional
- Every turn $t: p_h \sim \mathcal{U}([0, p_h^{\max}])$
- ▶ Hide $\lfloor p_h t \rfloor$ colour features at random
- ▶ Train agent with Proximal Policy Optimisation (PPO)^{1,2}

- FI: Full Information.
- PI-50: with $p_h \sim \mathcal{U}([0, 0.5])$
- PI-100: with $p_h \sim \mathcal{U}([0,1])$

^{1) &}quot;Proximal policy optimization algorithms", Schulman et al [11] 2) "Reinforcement Learning for Two-Player Zero-Sum Games", Crespo [2]

ICML 2022 (Stephan Wäldchen)

^{1) &}quot;Deep Neural Network Training with Frank-Wolfe", Pokutta et al. [10]

• Let $t \in [42]$

^{1) &}quot;Deep Neural Network Training with Frank-Wolfe", Pokutta et al. [10]

▶ Let $t \in [42]$, $\mathbf{x} \in [0, 1]^{3 \times 6 \times 7}$

^{1) &}quot;Deep Neural Network Training with Frank-Wolfe", Pokutta et al. [10]

▶ Let $t \in [42]$, $\mathbf{x} \in [0,1]^{3 \times 6 \times 7}$, $S \in [t]$

^{1) &}quot;Deep Neural Network Training with Frank-Wolfe", Pokutta et al. [10]

ICML 2022 (Stephan Wäldchen)

▶ Let $t \in [42]$, $\mathbf{x} \in [0, 1]^{3 \times 6 \times 7}$, $S \in [t]$ and let $\mathbf{x}^{(S)}$ be state with colour feature on S^c hidden

^{1) &}quot;Deep Neural Network Training with Frank-Wolfe", Pokutta et al. [10]

- ▶ Let $t \in [42]$, $\mathbf{x} \in [0,1]^{3 \times 6 \times 7}$, $S \in [t]$ and let $\mathbf{x}^{(S)}$ be state with colour feature on S^c hidden
- Let furthermore $a^* = \operatorname{argmax}_a P(a; \mathbf{x})$

^{1) &}quot;Deep Neural Network Training with Frank-Wolfe", Pokutta et al. [10]

- ▶ Let $t \in [42]$, $\mathbf{x} \in [0,1]^{3 \times 6 \times 7}$, $S \in [t]$ and let $\mathbf{x}^{(S)}$ be state with colour feature on S^c hidden
- Let furthermore $a^* = \operatorname{argmax}_a P(a; \mathbf{x})$
- \blacktriangleright We define $\nu^{\rm pol}:2^{[t]}\rightarrow [0,1]$ and $\nu^{\rm val}:2^{[t]}\rightarrow [-1,1]$ as

$$u^{\operatorname{pol}}(S) = P(a^*; \mathbf{x}^{(S)}) \quad \text{and} \quad \nu^{\operatorname{val}}(S) = V(\mathbf{x}^{(S)}).$$

^{1) &}quot;Deep Neural Network Training with Frank-Wolfe", Pokutta et al. [10]

- ▶ Let $t \in [42]$, $\mathbf{x} \in [0,1]^{3 \times 6 \times 7}$, $S \in [t]$ and let $\mathbf{x}^{(S)}$ be state with colour feature on S^c hidden
- Let furthermore $a^* = \operatorname{argmax}_a P(a; \mathbf{x})$
- \blacktriangleright We define $\nu^{\rm pol}:2^{[t]}\rightarrow [0,1]$ and $\nu^{\rm val}:2^{[t]}\rightarrow [-1,1]$ as

 $u^{\operatorname{pol}}(S) = P(a^*; \mathbf{x}^{(S)}) \quad \text{and} \quad \nu^{\operatorname{val}}(S) = V(\mathbf{x}^{(S)}).$

^{1) &}quot;Deep Neural Network Training with Frank-Wolfe", Pokutta et al. [10]

- ▶ Let $t \in [42]$, $\mathbf{x} \in [0,1]^{3 \times 6 \times 7}$, $S \in [t]$ and let $\mathbf{x}^{(S)}$ be state with colour feature on S^c hidden
- Let furthermore $a^* = \operatorname{argmax}_a P(a; \mathbf{x})$
- \blacktriangleright We define $\nu^{\rm pol}:2^{[t]}\rightarrow [0,1]$ and $\nu^{\rm val}:2^{[t]}\rightarrow [-1,1]$ as

$$u^{\operatorname{pol}}(S) = P(a^*; \mathbf{x}^{(S)}) \quad \text{and} \quad \nu^{\operatorname{val}}(S) = V(\mathbf{x}^{(S)}).$$

• We can approximate the Shapley sum by sampling from $\mathcal{U}(\Pi([t]))$:

$$\phi_i = \frac{1}{t!} \sum_{\pi \in \Pi([t])^{\text{sample}}} (\nu(P_i^{\pi} \cup \{i\}) - \nu(P_i^{\pi})).$$

^{1) &}quot;Deep Neural Network Training with Frank-Wolfe", Pokutta et al. [10]

- ▶ Let $t \in [42]$, $\mathbf{x} \in [0,1]^{3 \times 6 \times 7}$, $S \in [t]$ and let $\mathbf{x}^{(S)}$ be state with colour feature on S^c hidden
- Let furthermore $a^* = \operatorname{argmax}_a P(a; \mathbf{x})$
- \blacktriangleright We define $\nu^{\rm pol}:2^{[t]}\rightarrow [0,1]$ and $\nu^{\rm val}:2^{[t]}\rightarrow [-1,1]$ as

$$u^{\operatorname{pol}}(S) = P(a^*; \mathbf{x}^{(S)}) \quad \text{and} \quad \nu^{\operatorname{val}}(S) = V(\mathbf{x}^{(S)}).$$

• We can approximate the Shapley sum by sampling from $\mathcal{U}(\Pi([t]))$:

$$\phi_i = \frac{1}{t!} \sum_{\pi \in \Pi([t])^{\text{sample}}} (\nu(P_i^{\pi} \cup \{i\}) - \nu(P_i^{\pi})).$$

 $\blacktriangleright \mathbb{P}[|\phi_i - \bar{\phi}_i| \le \epsilon] \ge 1 - \delta \rightarrow (0.01, 0.01) \text{-approximation} \approx 26 \text{ 500 samples (Hoeffding)}$

^{1) &}quot;Deep Neural Network Training with Frank-Wolfe", Pokutta et al. [10]

ICML 2022 (Stephan Wäldchen)

- ▶ Let $t \in [42]$, $\mathbf{x} \in [0,1]^{3 \times 6 \times 7}$, $S \in [t]$ and let $\mathbf{x}^{(S)}$ be state with colour feature on S^c hidden
- Let furthermore $a^* = \operatorname{argmax}_a P(a; \mathbf{x})$
- \blacktriangleright We define $\nu^{\rm pol}:2^{[t]}\rightarrow [0,1]$ and $\nu^{\rm val}:2^{[t]}\rightarrow [-1,1]$ as

$$u^{\operatorname{pol}}(S) = P(a^*; \mathbf{x}^{(S)}) \quad \text{and} \quad \nu^{\operatorname{val}}(S) = V(\mathbf{x}^{(S)}).$$

• We can approximate the Shapley sum by sampling from $\mathcal{U}(\Pi([t]))$:

$$\phi_i = \frac{1}{t!} \sum_{\pi \in \Pi([t])^{\text{sample}}} (\nu(P_i^{\pi} \cup \{i\}) - \nu(P_i^{\pi})).$$

▶ $\mathbb{P}[|\phi_i - \bar{\phi}_i| \le \epsilon] \ge 1 - \delta \rightarrow (0.01, 0.01)$ -approximation ≈26 500 samples (Hoeffding) ▶ Calculate PIE with Frank-Wolfe optimiser solving¹ convex relaxation of

$$S^* = \operatorname*{argmin}_{|S| \leq \lfloor p_h t \rfloor} (\nu([t]) - \nu(S))^2.$$

^{1) &}quot;Deep Neural Network Training with Frank-Wolfe", Pokutta et al. [10]

Example Saliencies for different Methods

Information-Performance Comparison

Round-Robin Tournament

Round-Robin Tournament

Input		0.737	0.747	0.706		0.834		0.887	0.935
DeepShap			0.498	0.499	0.573	0.609	0.567	0.742	0.871
Guided Backprop		0.502		0.496	0.579	0.616	0.616		0.861
EN.	0.294	0.501	0.503		0.587	0.604	0.586	0.742	0.848
Gradient.	0.217	0.427	0.421	0.413		0.512	0.502	0.686	0.819
128.6	0.167	0.392	0.385	0.397	0.487		0.472	0.677	0.810
Deeplot	0.226	0.433	0.384	0.414	0.497	0.528		0.681	0.805
Smooth Grad	0.113	0.259	0.235		0.314	0.323	0.319		0.676
Random	0.065	0.130	0.140	0.152	0.181	0.190	0.195	0.324	
	mput	DeepShap	Guided OP	6 ¹⁴	Gradient	LRR.E	Deeplor	Smooth	Random

▶ So far works only for certain abstract games (Connect Four, Hex, Go, ...)

- ▶ So far works only for certain abstract games (Connect Four, Hex, Go, ...)
- \Rightarrow Filter out illegal moves with model-based approaches (see e.g. AlphaGo)

- ▶ So far works only for certain abstract games (Connect Four, Hex, Go, ...)
- \Rightarrow Filter out illegal moves with model-based approaches (see e.g. AlphaGo)
- Further extension to real-world tasks (high-dimensional, high redundancy) is challenging

- ▶ So far works only for certain abstract games (Connect Four, Hex, Go, ...)
- \Rightarrow Filter out illegal moves with model-based approaches (see e.g. AlphaGo)
- Further extension to real-world tasks (high-dimensional, high redundancy) is challenging
- \Rightarrow Our approach is should be used primarily for evaluation of saliency methods

- ▶ So far works only for certain abstract games (Connect Four, Hex, Go, ...)
- \Rightarrow Filter out illegal moves with model-based approaches (see e.g. AlphaGo)
- Further extension to real-world tasks (high-dimensional, high redundancy) is challenging
- $\Rightarrow\,$ Our approach is should be used primarily for evaluation of saliency methods
- ► Shapley sampling suffered from unstable policy layer for large hidden information

- \blacktriangleright So far works only for certain abstract games (Connect Four, Hex, Go, ...)
- \Rightarrow Filter out illegal moves with model-based approaches (see e.g. AlphaGo)
- Further extension to real-world tasks (high-dimensional, high redundancy) is challenging
- $\Rightarrow\,$ Our approach is should be used primarily for evaluation of saliency methods
- ► Shapley sampling suffered from unstable policy layer for large hidden information
- \Rightarrow Train value function instead

ZIB

- ▶ So far works only for certain abstract games (Connect Four, Hex, Go, ...)
- \Rightarrow Filter out illegal moves with model-based approaches (see e.g. AlphaGo)
- Further extension to real-world tasks (high-dimensional, high redundancy) is challenging
- $\Rightarrow\,$ Our approach is should be used primarily for evaluation of saliency methods
- ► Shapley sampling suffered from unstable policy layer for large hidden information
- \Rightarrow Train value function instead
- \Rightarrow Q-Learning could be a more stable approach

► Interpretability relies on a good model of the data distribution

- ► Interpretability relies on a good model of the data distribution
- ► We can design proxy-task where we know the distribution via abstract games with missing information

- ▶ Interpretability relies on a good model of the data distribution
- ► We can design proxy-task where we know the distribution via abstract games with missing information
- ▶ Use these tasks to evaluate saliency methods without going off-manifold

- ▶ Interpretability relies on a good model of the data distribution
- ► We can design proxy-task where we know the distribution via abstract games with missing information
- ▶ Use these tasks to evaluate saliency methods without going off-manifold

Thank You!

- Interpretability relies on a good model of the data distribution
- ► We can design proxy-task where we know the distribution via abstract games with missing information
- ▶ Use these tasks to evaluate saliency methods without going off-manifold

Thank You!

Contact: waeldchen@zib.de

Paper: Training Characteristic Functions with Reinforcement Learning: XAI-methods play Connect Four, S Wäldchen, F Huber, S Pokutta arXiv preprint arXiv:2202.11797

References i

C. Anders, P. Pasliev, A.-K. Dombrowski, K.-R. Müller, and P. Kessel. **Fairwashing explanations with off-manifold detergent.**

In International Conference on Machine Learning, pages 314-323. PMLR, 2020.

J. Crespo.

Reinforcement learning for two-player zero-sum games.

Master's thesis, Tecnico Lisboa, https://fenix.tecnico.ulisboa.pt/downloadFile/ 1689244997260153/81811-joao-crespo_dissertacao.pdf, 2019.

🔋 B. Dimanov, U. Bhatt, M. Jamnik, and A. Weller.

You shouldn't trust me: Learning models which conceal unfairness from multiple explanation methods.

In SafeAI@ AAAI, 2020.

References ii

- A.-K. Dombrowski, M. Alber, C. J. Anders, M. Ackermann, K.-R. Müller, and P. Kessel.
 Explanations can be manipulated and geometry is to blame.
 arXiv preprint arXiv:1906.07983, 2019.
- C. Frye, D. de Mijolla, T. Begley, L. Cowton, M. Stanley, and I. Feige.
 Shapley explainability on the data manifold.
 arXiv preprint arXiv:2006.01272, 2020.
- 🥫 J. Heo, S. Joo, and T. Moon.

Fooling neural network interpretations via adversarial model manipulation. *Advances in Neural Information Processing Systems*, 32:2925–2936, 2019.

 P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis.
 Explainable ai: A review of machine learning interpretability methods. Entropy, 23(1):18, 2020.

References iii

S. M. Lundberg and S.-I. Lee.

A unified approach to interpreting model predictions.

In Proceedings of the 31st international conference on neural information processing systems, pages 4768–4777, 2017.

🥫 J. Macdonald, M. Besançon, and S. Pokutta.

Interpretable neural networks with frank-wolfe: Sparse relevance maps and relevance orderings.

arXiv preprint arXiv:2110.08105, 2021.

🔋 S. Pokutta, C. Spiegel, and M. Zimmer.

Deep neural network training with frank-wolfe.

arXiv preprint arXiv:2010.07243, 2020.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. **Proximal policy optimization algorithms.**

arXiv preprint arXiv:1707.06347, 2017.

References iv

ZIB

- L. S. Shapley.
 - 17. A value for n-person games.
 - Princeton University Press, 2016.
- A. Shih, A. Choi, and A. Darwiche.

A symbolic approach to explaining bayesian network classifiers. *arXiv preprint arXiv:1805.03364*, 2018.

- D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju.
 Fooling lime and shap: Adversarial attacks on post hoc explanation methods.
 In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pages 180–186, 2020.
- D. Slack, S. Hilgard, H. Lakkaraju, and S. Singh.
 Counterfactual explanations can be manipulated. arXiv preprint arXiv:2106.02666, 2021.

Appendix

Ground Truth Comparison: Winning Move

Tournament: Standard Deviation and Illegal Move Rate

