Training Characteristic Functions with Reinforcement Learning

Stephan Wäldchen, Felix Huber, Sebastian Pokutta
Zuse Institut Berlin

39th International Conference on Machine Learning
July 17 - 23, 2022

Z|B

- Core idea: Probe black-box function with different inputs

How do we interpret black-box Functions?

- Core idea: Probe black-box function with different inputs

- Local interpretation (for specific input \mathbf{x}): vary features

How do we interpret black-box Functions?

- Core idea: Probe black-box function with different inputs
- Local interpretation (for specific input \mathbf{x}): vary features

```
Prediction probabilities
```


Text with highlighted words
Why does the older generation think that just because they don't understand video games and technology, they feel like they have to hate them and blame every bad thing on them?

LIME saliency ${ }^{1}$

How do we interpret black-box Functions?

- Core idea: Probe black-box function with different inputs
- Local interpretation (for specific input \mathbf{x}): vary features
- ML: Saliency \leftrightarrow Coop. Game Theory: Surplus Attribution

```
Prediction probabilities
\begin{tabular}{ll} 
sincere \\
\cline { 2 - 3 } \\
insincere \\
\cline { 2 - 4 }
\end{tabular}
```


Text with highlighted words

Why does the older generation think that just because they don't understand video games and technology, they feel like they have to hate them and blame every bad thing on them?

LIME saliency ${ }^{1}$

[^0]
How do we interpret black-box Functions?

- Core idea: Probe black-box function with different inputs
- Local interpretation (for specific input \mathbf{x}): vary features
- ML: Saliency \leftrightarrow Coop. Game Theory: Surplus Attribution
- Characteristic function: $\nu: 2^{[d]} \rightarrow \mathbb{R}$

Text with highlighted words
Why does the older generation think that just because they don't understand video games and technology, they feel like they have to hate them and blame every bad thing on them?

LIME saliency ${ }^{1}$

[^1]
How do we interpret black-box Functions?

- Core idea: Probe black-box function with different inputs
- Local interpretation (for specific input \mathbf{x}): vary features
- ML: Saliency \leftrightarrow Coop. Game Theory: Surplus Attribution
- Characteristic function: $\nu: 2^{[d]} \rightarrow \mathbb{R}$

Prediction probabilities

sincere	
insincere	0.16

Text with highlighted words

Why does the older generation think that just because they don't understand video games and technology, they feel like they have to hate them and blame every bad thing on them?

LIME saliency ${ }^{1}$

How do we interpret black-box Functions?

- Core idea: Probe black-box function with different inputs
- Local interpretation (for specific input \mathbf{x}): vary features
- ML: Saliency \leftrightarrow Coop. Game Theory: Surplus Attribution
- Characteristic function: $\nu: 2^{[d]} \rightarrow \mathbb{R}$
- Prime Implicant Explanation ${ }^{2}$ (mostly for $\nu: 2^{[d]} \rightarrow\{0,1\}$)

$$
S^{*}=\underset{S \subset[d]}{\operatorname{argmin}}|S| \quad \text { s.t. } \quad \nu(S)=\nu([d])
$$

[^2]
How do we interpret black-box Functions?

- Core idea: Probe black-box function with different inputs
- Local interpretation (for specific input \mathbf{x}): vary features
- ML: Saliency \leftrightarrow Coop. Game Theory: Surplus Attribution
- Characteristic function: $\nu: 2^{[d]} \rightarrow \mathbb{R}$
- Prime Implicant Explanation ${ }^{2}$ (mostly for $\nu: 2^{[d]} \rightarrow\{0,1\}$)

$$
S^{*}=\underset{S \subset[d]}{\operatorname{argmin}}|S| \quad \text { s.t. } \quad \nu(S)=\nu([d])
$$

- Shapley Values ${ }^{3}$ (linear, efficient, symmetric, null-player)

$$
\phi_{i}=\frac{1}{d!} \sum_{\pi \in \Pi([d])}\left(\nu\left(P_{i}^{\pi} \cup\{i\}\right)-\nu\left(P_{i}^{\pi}\right)\right) .
$$

[^3]
How do we interpret black-box Functions?

- Core idea: Probe black-box function with different inputs
- Local interpretation (for specific input \mathbf{x}): vary features
- ML: Saliency \leftrightarrow Coop. Game Theory: Surplus Attribution
- Characteristic function: $\nu: 2^{[d]} \rightarrow \mathbb{R}$
- Prime Implicant Explanation ${ }^{2}$ (mostly for $\nu: 2^{[d]} \rightarrow\{0,1\}$)

$$
S^{*}=\underset{S \subset[d]}{\operatorname{argmin}}|S| \quad \text { s.t. } \quad \nu(S)=\nu([d])
$$

- Shapley Values ${ }^{3}$ (linear, efficient, symmetric, null-player)

$$
\phi_{i}=\frac{1}{d!} \sum_{\pi \in \Pi([d])}\left(\nu\left(P_{i}^{\pi} \cup\{i\}\right)-\nu\left(P_{i}^{\pi}\right)\right) .
$$

- Problem: We don't have characteristic functions!

[^4]Interpretations Rely on a Model of the Data Manifold

Interpretations Rely on a Model of the Data Manifold

- Approach from Lundberg et al ${ }^{1}$:

$$
\nu_{\phi, \mathbf{x}}(S)=\mathbb{E}_{\mathbf{y}}\left[\Phi(\mathbf{y}) \mid \mathbf{y}_{S}=\mathbf{x}_{S}\right]=\int \Phi(\mathbf{x}) \mathrm{d} \mathbb{P}\left[\mathbf{x}_{S_{c}} \mid \mathbf{x}_{S}\right] .
$$

[^5]
Interpretations Rely on a Model of the Data Manifold

- Approach from Lundberg et al ${ }^{1}$:

$$
\nu_{\phi, \mathbf{x}}(S)=\mathbb{E}_{\mathbf{y}}\left[\Phi(\mathbf{y}) \mid \mathbf{y}_{S}=\mathbf{x}_{S}\right]=\int \Phi(\mathbf{x}) \mathrm{d} \mathbb{P}\left[\mathbf{x}_{S_{c}} \mid \mathbf{x}_{S}\right] .
$$

- Needs good model of $\mathbb{P}\left[\mathbf{x}_{S_{c}} \mid \mathbf{x}_{S}\right]$!

[^6]
Interpretations Rely on a Model of the Data Manifold

- Approach from Lundberg et al ${ }^{1}$:

$$
\nu_{\phi, \mathbf{x}}(S)=\mathbb{E}_{\mathbf{y}}\left[\Phi(\mathbf{y}) \mid \mathbf{y}_{S}=\mathbf{x}_{S}\right]=\int \Phi(\mathbf{x}) \mathrm{d} \mathbb{P}\left[\mathbf{x}_{S_{c}} \mid \mathbf{x}_{S}\right] .
$$

- Needs good model of $\mathbb{P}\left[\mathbf{x}_{S_{c}} \mid \mathbf{x}_{s}\right]$!
- Most methods simply approximate with baseline values (sometimes layer-wise)

[^7]
Interpretations Rely on a Model of the Data Manifold

- Approach from Lundberg et al ${ }^{1}$:

$$
\nu_{\phi, \mathbf{x}}(S)=\mathbb{E}_{\mathbf{y}}\left[\Phi(\mathbf{y}) \mid \mathbf{y}_{S}=\mathbf{x}_{S}\right]=\int \Phi(\mathbf{x}) \mathrm{d} \mathbb{P}\left[\mathbf{x}_{S_{c}} \mid \mathbf{x}_{S}\right] .
$$

- Needs good model of $\mathbb{P}\left[\mathbf{x}_{S^{c}} \mid \mathbf{x}_{S}\right]$!
- Most methods simply approximate with baseline values (sometimes layer-wise)
- Change off-manifold behaviour to manipulate:

Gradient, Integrated gradients ${ }^{2,3}$, LRP 2,4,7,
LIME 3,5, DeepShap ${ }^{3,5}$, Grad-Cam ${ }^{7}$, Shapley-based ${ }^{6}$, Counterfactual explanations ${ }^{8}$,

[^8]
Interpretations Rely on a Model of the Data Manifold

- Approach from Lundberg et al ${ }^{1}$:

$$
\nu_{\phi, \mathbf{x}}(S)=\mathbb{E}_{\mathbf{y}}\left[\Phi(\mathbf{y}) \mid \mathbf{y}_{S}=\mathbf{x}_{S}\right]=\int \Phi(\mathbf{x}) \mathrm{d} \mathbb{P}\left[\mathbf{x}_{S_{c}} \mid \mathbf{x}_{S}\right] .
$$

- Needs good model of $\mathbb{P}\left[\mathbf{x}_{S^{c}} \mid \mathbf{x}_{S}\right]$!
Image FW AFW
- Most methods simply approximate with baseline values (sometimes layer-wise)
- Change off-manifold behaviour to manipulate:

Gradient, Integrated gradients ${ }^{2,3}$, LRP 2,4,7,
LIME ${ }^{3,5}$, DeepShap ${ }^{3,5}$, Grad-Cam ${ }^{7}$, Shapley-based ${ }^{6}$, Counterfactual explanations ${ }^{8}$,

- Best Performer RDE creates new features! ${ }^{8}$

[^9]
Interpretations Rely on a Model of the Data Manifold

- Approach from Lundberg et al ${ }^{1}$:

$$
\nu_{\phi, \mathbf{x}}(S)=\mathbb{E}_{\mathbf{y}}\left[\Phi(\mathbf{y}) \mid \mathbf{y}_{S}=\mathbf{x}_{S}\right]=\int \Phi(\mathbf{x}) \mathrm{d} \mathbb{P}\left[\mathbf{x}_{S_{c}} \mid \mathbf{x}_{S}\right] .
$$

- Most methods simply approximate with baseline values (sometimes layer-wise)
- Change off-manifold behaviour to manipulate:

Gradient, Integrated gradients ${ }^{2,3}$, LRP 2,4,7,
LIME ${ }^{3,5}$, DeepShap ${ }^{3,5}$, Grad-Cam ${ }^{7}$, Shapley-based ${ }^{6}$, Counterfactual explanations ${ }^{8}$,

- Idea: Directly train a characteristic function!

[^10]
Setup: Connect Four with hidden colour information

- Abstract Games: complex, yet low-dimensional

Setup: Connect Four with hidden colour information

- Abstract Games: complex, yet low-dimensional

1) "Proximal policy optimization algorithms", Schulman et al [11] 2) "Reinforcement Learning for Two-Player Zero-Sum Games", Crespo [2]

Setup: Connect Four with hidden colour information

- Abstract Games: complex, yet low-dimensional
- Every turn t : $p_{h} \sim \mathcal{U}\left(\left[0, p_{h}^{\text {max }}\right]\right)$

1) "Proximal policy optimization algorithms", Schulman et al [11] 2) "Reinforcement Learning for Two-Player Zero-Sum Games", Crespo [2]

Setup: Connect Four with hidden colour information

- Abstract Games: complex, yet low-dimensional
- Every turn t : $p_{h} \sim \mathcal{U}\left(\left[0, p_{h}^{\max }\right]\right)$
- Hide $\left\lfloor p_{h} t\right\rfloor$ colour features at random

1) "Proximal policy optimization algorithms", Schulman et al [11] 2) "Reinforcement Learning for Two-Player Zero-Sum Games", Crespo [2]

Setup: Connect Four with hidden colour information

- Abstract Games: complex, yet low-dimensional
- Every turn $t: p_{h} \sim \mathcal{U}\left(\left[0, p_{h}^{\max }\right]\right)$
- Hide $\left\lfloor p_{h} t\right\rfloor$ colour features at random

1) "Proximal policy optimization algorithms", Schulman et al [11] 2) "Reinforcement Learning for Two-Player Zero-Sum Games", Crespo [2]

Setup: Connect Four with hidden colour information

- Abstract Games: complex, yet low-dimensional
- Every turn t : $p_{h} \sim \mathcal{U}\left(\left[0, p_{h}^{\max }\right]\right)$
- Hide $\left\lfloor p_{h} t\right\rfloor$ colour features at random
- Train agent with Proximal Policy Optimisation (PPO) ${ }^{1,2}$

1) "Proximal policy optimization algorithms", Schulman et al [11] 2) "Reinforcement Learning for Two-Player Zero-Sum Games", Crespo [2]

Setup: Connect Four with hidden colour information

- Abstract Games: complex, yet low-dimensional
- FI: Full Information.
- Every turn $t: p_{h} \sim \mathcal{U}\left(\left[0, p_{h}^{\max }\right]\right)$
- Hide $\left\lfloor p_{h} t\right\rfloor$ colour features at random
- Train agent with Proximal Policy Optimisation (PPO) ${ }^{1,2}$

1) "Proximal policy optimization algorithms", Schulman et al [11] 2) "Reinforcement Learning for Two-Player Zero-Sum Games", Crespo [2]

Setup: Connect Four with hidden colour information

- Abstract Games: complex, yet low-dimensional
- Every turn $t: p_{h} \sim \mathcal{U}\left(\left[0, p_{h}^{\max }\right]\right)$
- FI: Full Information.
- PI-50: with $p_{h} \sim \mathcal{U}([0,0.5])$
- Hide $\left\lfloor p_{h} t\right\rfloor$ colour features at random
- Train agent with Proximal Policy Optimisation (PPO) ${ }^{1,2}$

1) "Proximal policy optimization algorithms", Schulman et al [11] 2) "Reinforcement Learning for Two-Player Zero-Sum Games", Crespo [2]

Setup: Connect Four with hidden colour information

- Abstract Games: complex, yet low-dimensional
- Every turn $t: p_{h} \sim \mathcal{U}\left(\left[0, p_{h}^{\max }\right]\right)$
- Hide $\left\lfloor p_{h} t\right\rfloor$ colour features at random
- FI: Full Information.
- PI-50: with $p_{h} \sim \mathcal{U}([0,0.5])$
- PI-100: with $p_{h} \sim \mathcal{U}([0,1])$
- Train agent with Proximal Policy Optimisation (PPO) ${ }^{1,2}$

1) "Proximal policy optimization algorithms", Schulman et al [11] 2) "Reinforcement Learning for Two-Player Zero-Sum Games", Crespo [2]

Setup: Connect Four with hidden colour information

- Abstract Games: complex, yet low-dimensional
- Every turn $t: p_{h} \sim \mathcal{U}\left(\left[0, p_{h}^{\max }\right]\right)$
- Hide $\left\lfloor p_{h} t\right\rfloor$ colour features at random
- Train agent with Proximal Policy Optimisation (PPO) ${ }^{1,2}$
- FI: Full Information.
- PI-50: with $p_{h} \sim \mathcal{U}([0,0.5])$
- PI-100: with $p_{h} \sim \mathcal{U}([0,1])$

[^11]
Setup: Connect Four with hidden colour information

- Abstract Games: complex, yet low-dimensional
- Every turn $t: p_{h} \sim \mathcal{U}\left(\left[0, p_{h}^{\max }\right]\right)$
- Hide $\left\lfloor p_{h} t\right\rfloor$ colour features at random
- Train agent with Proximal Policy Optimisation (PPO) ${ }^{1,2}$
- FI: Full Information.
- PI-50: with $p_{h} \sim \mathcal{U}([0,0.5])$
- PI-100: with $p_{h} \sim \mathcal{U}([0,1])$

[^12]
Interpretability with Characteristic Functions

1) "Deep Neural Network Training with Frank-Wolfe", Pokutta et al. [10] ICML 2022 (Stephan Wäldchen)

- Let $t \in[42]$
- Let $t \in[42], \mathbf{x} \in[0,1]^{3 \times 6 \times 7}$
- Let $t \in[42], \mathbf{x} \in[0,1]^{3 \times 6 \times 7}, S \in[t]$

Interpretability with Characteristic Functions

- Let $t \in[42], \mathbf{x} \in[0,1]^{3 \times 6 \times 7}, S \in[t]$ and let $\mathbf{x}^{(S)}$ be state with colour feature on S^{c} hidden

Interpretability with Characteristic Functions

- Let $t \in[42], \mathbf{x} \in[0,1]^{3 \times 6 \times 7}, S \in[t]$ and let $\mathbf{x}^{(S)}$ be state with colour feature on S^{c} hidden - Let furthermore $a^{*}=\operatorname{argmax}_{a} P(a ; \mathbf{x})$

Interpretability with Characteristic Functions

- Let $t \in[42], \mathbf{x} \in[0,1]^{3 \times 6 \times 7}, S \in[t]$ and let $\mathbf{x}^{(S)}$ be state with colour feature on S^{c} hidden
- Let furthermore $a^{*}=\operatorname{argmax}_{a} P(a ; \mathbf{x})$
- We define $\nu^{\mathrm{pol}}: 2^{[t]} \rightarrow[0,1]$ and $\nu^{\text {val }}: 2^{[t]} \rightarrow[-1,1]$ as

$$
\nu_{\mathrm{pol}}^{\mathrm{pol}}(S)=P\left(a^{*} ; \mathbf{x}^{(S)}\right) \quad \text { and } \quad \nu^{\mathrm{val}}(S)=V\left(\mathbf{x}^{(S)}\right) .
$$

Interpretability with Characteristic Functions

- Let $t \in[42], \mathbf{x} \in[0,1]^{3 \times 6 \times 7}, S \in[t]$ and let $\mathbf{x}^{(S)}$ be state with colour feature on S^{c} hidden
- Let furthermore $a^{*}=\operatorname{argmax}_{a} P(a ; \mathbf{x})$
- We define $\nu^{\mathrm{pol}}: 2^{[t]} \rightarrow[0,1]$ and $\nu^{\text {val }}: 2^{[t]} \rightarrow[-1,1]$ as

$$
\nu^{\text {pol }}(S)=P\left(a^{*} ; \mathbf{x}^{(S)}\right) \quad \text { and } \quad \nu^{\text {val }}(S)=V\left(\mathbf{x}^{(S)}\right) .
$$

Interpretability with Characteristic Functions

- Let $t \in[42], \mathbf{x} \in[0,1]^{3 \times 6 \times 7}, S \in[t]$ and let $\mathbf{x}^{(S)}$ be state with colour feature on S^{c} hidden
- Let furthermore $a^{*}=\operatorname{argmax}_{a} P(a ; \mathbf{x})$
- We define $\nu^{\mathrm{pol}}: 2^{[t]} \rightarrow[0,1]$ and $\nu^{\text {val }}: 2^{[t]} \rightarrow[-1,1]$ as

$$
\nu^{\text {pol }}(S)=P\left(a^{*} ; \mathbf{x}^{(S)}\right) \quad \text { and } \quad \nu^{\text {val }}(S)=V\left(\mathbf{x}^{(S)}\right) .
$$

- We can approximate the Shapley sum by sampling from $\mathcal{U}(\Pi([t]))$:

$$
\phi_{i}=\frac{1}{t!} \sum_{\pi \in \Pi([t])^{\text {sample }}}\left(\nu\left(P_{i}^{\pi} \cup\{i\}\right)-\nu\left(P_{i}^{\pi}\right)\right) .
$$

Interpretability with Characteristic Functions

- Let $t \in[42], \mathbf{x} \in[0,1]^{3 \times 6 \times 7}, S \in[t]$ and let $\mathbf{x}^{(S)}$ be state with colour feature on S^{c} hidden
- Let furthermore $a^{*}=\operatorname{argmax}_{a} P(a ; \mathbf{x})$
- We define $\nu^{\mathrm{pol}}: 2^{[t]} \rightarrow[0,1]$ and $\nu^{\text {val }}: 2^{[t]} \rightarrow[-1,1]$ as

$$
\nu^{\mathrm{pol}}(S)=P\left(a^{*} ; x^{(S)}\right) \quad \text { and } \quad \nu^{\mathrm{val}}(S)=V\left(\mathbf{x}^{(S)}\right)
$$

- We can approximate the Shapley sum by sampling from $\mathcal{U}(\Pi([t]))$:

$$
\phi_{i}=\frac{1}{t!} \sum_{\pi \in \Pi\left([t)^{\text {sample }}\right.}\left(\nu\left(P_{i}^{\pi} \cup\{i\}\right)-\nu\left(P_{i}^{\pi}\right)\right) .
$$

- $\mathbb{P}\left[\left|\phi_{i}-\bar{\phi}_{i}\right| \leq \epsilon\right] \geq 1-\delta \rightarrow(0.01,0.01)$-approximation ≈ 26500 samples (Hoeffding)

[^13]
Interpretability with Characteristic Functions

- Let $t \in[42], \mathbf{x} \in[0,1]^{3 \times 6 \times 7}, S \in[t]$ and let $\mathbf{x}^{(S)}$ be state with colour feature on S^{c} hidden
- Let furthermore $a^{*}=\operatorname{argmax}_{a} P(a ; \mathbf{x})$
- We define $\nu^{\mathrm{pol}}: 2^{[t]} \rightarrow[0,1]$ and $\nu^{\text {val }}: 2^{[t]} \rightarrow[-1,1]$ as

$$
\nu^{\text {pol }}(S)=P\left(a^{*} ; \mathbf{x}^{(S)}\right) \quad \text { and } \quad \nu^{\text {val }}(S)=V\left(\mathbf{x}^{(S)}\right) .
$$

- We can approximate the Shapley sum by sampling from $\mathcal{U}(\Pi([t]))$:

$$
\phi_{i}=\frac{1}{t!} \sum_{\pi \in \Pi([t])^{\text {sample }}}\left(\nu\left(P_{i}^{\pi} \cup\{i\}\right)-\nu\left(P_{i}^{\pi}\right)\right) .
$$

- $\mathbb{P}\left[\left|\phi_{i}-\bar{\phi}_{i}\right| \leq \epsilon\right] \geq 1-\delta \rightarrow(0.01,0.01)$-approximation ≈ 26500 samples (Hoeffding)
- Calculate PIE with Frank-Wolfe optimiser solving ${ }^{1}$ convex relaxation of

$$
S^{*}=\underset{|S| \leq\left\lfloor p_{h} t\right\rfloor}{\operatorname{argmin}}(\nu([t])-\nu(S))^{2} .
$$

[^14]
Example Saliencies for different Methods

$\begin{gathered} \text { xox } \\ \text { xxox } \\ \text { ooxoorox } \end{gathered}$	$\begin{aligned} & \text { xox } \\ & \text { xxox } \\ & \text { oxoonax } \end{aligned}$	$\begin{aligned} & x o x \\ & \begin{array}{c} x \times x \\ \text { oxocor } \end{array} \\ & \hline \end{aligned}$	$\begin{gathered} \text { xox } \\ \text { xxox } \\ \text { oxocox } \end{gathered}$	$\begin{gathered} \text { xox } \\ \text { xxox } \\ \text { oxotox } \end{gathered}$
$\begin{aligned} & \text { xox } \\ & \text { xxoox } \\ & 00 \times 010 \times x \end{aligned}$	$\begin{aligned} & \text { xax } \\ & \text { xxoox } \\ & \text { ox ocgox } \end{aligned}$			$\begin{gathered} x-x \\ \text { xxox } \\ \text { ooxorox } \end{gathered}$
Gradient	DeepShap	GuidedBP	SmoothGrad	LRP
$\begin{aligned} & \text { xox } \\ & \text { xoxooox } \\ & \text { ooxoor } \end{aligned}$	$\begin{array}{r} x 08 \\ x \times 00 \times \\ 00 \times 000 x \\ \hline \end{array}$	\times $\times \times 00 \times$ -oxo ox	$\begin{array}{r} \quad x^{x} \\ \begin{array}{c} x^{x} 0 \times 0 \\ 0 \end{array} \\ \hline \end{array}$	1.0 0.5
		$\begin{aligned} & x+x \\ & \text { xox } \\ & \text { xxoox } \\ & \text { xox } \end{aligned}$		0.0
DeepTaylor	Random	Shapley Sampling	FW	

Information-Performance Comparison

Round-Robin Tournament

Round-Robin Tournament

Masker1

Player2

Limitations and Outlook

Limitations and Outlook

- So far works only for certain abstract games (Connect Four, Hex, Go, ...)

Limitations and Outlook

- So far works only for certain abstract games (Connect Four, Hex, Go, ...)
\Rightarrow Filter out illegal moves with model-based approaches (see e.g. AlphaGo)

Limitations and Outlook

- So far works only for certain abstract games (Connect Four, Hex, Go, ...)
\Rightarrow Filter out illegal moves with model-based approaches (see e.g. AlphaGo)
- Further extension to real-world tasks (high-dimensional, high redundancy) is challenging

Limitations and Outlook

- So far works only for certain abstract games (Connect Four, Hex, Go, ...)
\Rightarrow Filter out illegal moves with model-based approaches (see e.g. AlphaGo)
- Further extension to real-world tasks (high-dimensional, high redundancy) is challenging \Rightarrow Our approach is should be used primarily for evaluation of saliency methods

Limitations and Outlook

- So far works only for certain abstract games (Connect Four, Hex, Go, ...)
\Rightarrow Filter out illegal moves with model-based approaches (see e.g. AlphaGo)
- Further extension to real-world tasks (high-dimensional, high redundancy) is challenging \Rightarrow Our approach is should be used primarily for evaluation of saliency methods
- Shapley sampling suffered from unstable policy layer for large hidden information

Limitations and Outlook

- So far works only for certain abstract games (Connect Four, Hex, Go, ...)
\Rightarrow Filter out illegal moves with model-based approaches (see e.g. AlphaGo)
- Further extension to real-world tasks (high-dimensional, high redundancy) is challenging
\Rightarrow Our approach is should be used primarily for evaluation of saliency methods
- Shapley sampling suffered from unstable policy layer for large hidden information
\Rightarrow Train value function instead

Limitations and Outlook

- So far works only for certain abstract games (Connect Four, Hex, Go, ...)
\Rightarrow Filter out illegal moves with model-based approaches (see e.g. AlphaGo)
- Further extension to real-world tasks (high-dimensional, high redundancy) is challenging
\Rightarrow Our approach is should be used primarily for evaluation of saliency methods
- Shapley sampling suffered from unstable policy layer for large hidden information
\Rightarrow Train value function instead
\Rightarrow Q-Learning could be a more stable approach

Conclusion:

Conclusion:

- Interpretability relies on a good model of the data distribution

Conclusion:

- Interpretability relies on a good model of the data distribution
- We can design proxy-task where we know the distribution via abstract games with missing information

Conclusion:

- Interpretability relies on a good model of the data distribution
- We can design proxy-task where we know the distribution via abstract games with missing information
- Use these tasks to evaluate saliency methods without going off-manifold

Conclusion:

- Interpretability relies on a good model of the data distribution
- We can design proxy-task where we know the distribution via abstract games with missing information
- Use these tasks to evaluate saliency methods without going off-manifold

Thank You!

Conclusion:

- Interpretability relies on a good model of the data distribution
- We can design proxy-task where we know the distribution via abstract games with missing information
- Use these tasks to evaluate saliency methods without going off-manifold

Thank You!

8 Contact: waeldchen@zib.de
Faper: Training Characteristic Functions with Reinforcement Learning:
XAI-methods play Connect Four, S Wäldchen, F Huber, S Pokutta arXiv preprint arXiv:2202.11797

References i

R. Anders, P. Pasliev, A.-K. Dombrowski, K.-R. Müller, and P. Kessel.

Fairwashing explanations with off-manifold detergent.
In International Conference on Machine Learning, pages 314-323. PMLR, 2020.
用 J. Crespo.
Reinforcement learning for two-player zero-sum games.
Master's thesis, Tecnico Lisboa, https://fenix.tecnico.ulisboa.pt/downloadFile/ 1689244997260153/81811-joao-crespo_dissertacao.pdf, 2019.
園 B. Dimanov, U. Bhatt, M. Jamnik, and A. Weller.
You shouldn't trust me: Learning models which conceal unfairness from multiple explanation methods.
In SafeAl@ AAAI, 2020.

References if

围 A．－K．Dombrowski，M．Alber，C．J．Anders，M．Ackermann，K．－R．Müller，and P．Kessel． Explanations can be manipulated and geometry is to blame．
arXiv preprint arXiv：1906．07983， 2019.
围 C．Frye，D．de Mijolla，T．Begley，L．Cowton，M．Stanley，and I．Feige． Shapley explainability on the data manifold．
arXiv preprint arXiv：2006．01272， 2020.
雷 J．Heo，S．Joo，and T．Moon．
Fooling neural network interpretations via adversarial model manipulation． Advances in Neural Information Processing Systems，32：2925－2936， 2019.

目 P．Linardatos，V．Papastefanopoulos，and S．Kotsiantis．
Explainable ai：A review of machine learning interpretability methods．
Entropy，23（1）：18， 2020.

References ifi

围 S．M．Lundberg and S．－I．Lee．
A unified approach to interpreting model predictions．
In Proceedings of the 31st international conference on neural information processing systems，pages 4768－4777， 2017.
J．Macdonald，M．Besançon，and S．Pokutta．
Interpretable neural networks with frank－wolfe：Sparse relevance maps and relevance orderings．
arXiv preprint arXiv：2110．08105， 2021.
闰 S．Pokutta，C．Spiegel，and M．Zimmer．
Deep neural network training with frank－wolfe．
arXiv preprint arXiv：2010．07243， 2020.
围 J．Schulman，F．Wolski，P．Dhariwal，A．Radford，and O．Klimov．
Proximal policy optimization algorithms．
arXiv preprint arXiv：1707．06347， 2017.

References iv

图 L. S. Shapley.
17. A value for \mathbf{n}-person games.

Princeton University Press, 2016.
埥 A. Shih, A. Choi, and A. Darwiche.
A symbolic approach to explaining bayesian network classifiers.
arXiv preprint arXiv:1805.03364, 2018.
Tio D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju.
Fooling lime and shap: Adversarial attacks on post hoc explanation methods.
In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pages 180-186, 2020.
D. Slack, S. Hilgard, H. Lakkaraju, and S. Singh.

Counterfactual explanations can be manipulated.
arXiv preprint arXiv:2106.02666, 2021.

Appendix

Ground Truth Comparison: Winning Move

Tournament: Standard Deviation and Illegal Move Rate

48^{20}		0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.01
	0.02		0.02	0.01	0.02	0.01	0.02	0.01	0.01
	0.06	0.05		0.04	0.03	0.03	0.03	0.01	0.02
*	0.06	0.03	0.04		0.02	0.04	0.02	0.01	0.01
$0^{00^{2} e^{x}}$	0.02	0.02	0.02	0.01		0.02	0.02	0.01	0.01
$8^{8_{4}^{4}}$	0.02	0.03	0.01	0.01	0.01		0.01	0.01	0.01
	0.03	0.03	0.03	0.03	0.02	0.03		0.01	0.01
	0.01	0.00	0.01	0.00	0.01	0.00	0.01		0.00
$8^{0^{10}}$	0.00	0.01	0.01	0.01	0.01	0.00	0.01	0.01	
		$e^{e^{\left(e^{2}\right.}}$				$v^{8^{2}}$		Cos	

[^0]: 1) "Explainable ai: A review of machine learning interpretability methods", Linardatos et al. [7]
[^1]: 1) "Explainable ai: A review of machine learning interpretability methods", Linardatos et al. [7]
[^2]:

[^3]: n-person games" Shapley [12]

[^4]: n-person games" Shapley [12]

[^5]: 1) "A unified approach to interpreting model predictions", Lundberg et al, [8]
[^6]: 1) "A unified approach to interpreting model predictions", Lundberg et al, [8]
[^7]: 1) "A unified approach to interpreting model predictions", Lundberg et al, [8]
[^8]: 1) "A unified approach to interpreting model predictions", Lundberg et al, [8] 2) "Fairwashing explanations with off-manifold detergent", Anders et al. [1] 3) "You Shouldn't Trust Me: Learning Models Which Conceal Unfairness From Multiple Explanation Methods", Dimanov et al. [3] 4) "Explanations can be manipulated and geometry is to blame" Dombrowski et al. [4] 5) "Fooling lime and shap: Adversarial attacks on post hoc explanation methods", Slack et al. [14] 6) "Shapley explainability on the data manifold", Frye et al. [5] 7) "Fooling neural network interpretations via adversarial model manipulation" Heo et al. [6] 8) "Counterfactual Explanations Can Be Manipulated" Slack et al. [15]
[^9]: 1) "A unified approach to interpreting model predictions", Lundberg et al, [8] 2) "Fairwashing explanations with off-manifold detergent", Anders et al. [1] 3) "You Shouldn't Trust Me: Learning Models Which Conceal Unfairness From Multiple Explanation Methods", Dimanov et al. [3] 4) "Explanations can be manipulated and geometry is to blame" Dombrowski et al. [4] 5) "Fooling lime and shap: Adversarial attacks on post hoc explanation methods", Slack et al. [14] 6) "Shapley explainability on the data manifold", Frye et al. [5] 7) "Fooling neural network interpretations via adversarial model manipulation" Heo et al. [6] 8) "Counterfactual Explanations Can Be Manipulated" Slack et al. [15] 9) "Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings", Macdonald et al. [9]
[^10]: 1) "A unified approach to interpreting model predictions", Lundberg et al, [8] 2) "Fairwashing explanations with off-manifold detergent", Anders et al. [1] 3) "You Shouldn't Trust Me: Learning Models Which Conceal Unfairness From Multiple Explanation Methods", Dimanov et al. [3] 4) "Explanations can be manipulated and geometry is to blame" Dombrowski et al. [4] 5) "Fooling lime and shap: Adversarial attacks on post hoc explanation methods", Slack et al. [14] 6) "Shapley explainability on the data manifold", Frye et al. [5] 7) "Fooling neural network interpretations via adversarial model manipulation" Heo et al. [6] 8) "Counterfactual Explanations Can Be Manipulated" Slack et al. [15] 9) "Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings", Macdonald et al. [9]
[^11]: 1) "Proximal policy optimization algorithms", Schulman et al [11] 2) "Reinforcement Learning for Two-Player Zero-Sum Games", Crespo [2]
[^12]: 1) "Proximal policy optimization algorithms", Schulman et al [11] 2) "Reinforcement Learning for Two-Player Zero-Sum Games", Crespo [2]
[^13]: 1) "Deep Neural Network Training with Frank-Wolfe", Pokutta et al. [10]
[^14]: 1) "Deep Neural Network Training with Frank-Wolfe", Pokutta et al. [10]
