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MOT and RMO' : KL projections point of view

* Sinkhorn-type algorithms are power-horse of optimal transport!

* While many aspects of their convergence are understood, some questions
remain open, especially in the multimarginal OT (MOT).

ar € R}, ||lag|l1 = 1 - given histograms, k € |m]

MOT : min (C, )
e il

C € X - given cost tensor

X = R™M*XPm _ yector space of m-dim tensors

Ri: X — R"* - k-th push-forward operator

R: X 5 R™ x .- xR, R(x) = (Ri(7),...,Rn(m))

I, ={reX, |R(7) = (a1,...,a,)} - transport polytope



MOT and RMO' : KL projections point of view

* Sinkhorn-type algorithms are power-horse of optimal transport!

* Here we study entropic-regularised MOT (RMOT).

n > 0 - regularization parameter

H(m) = > ;eq mi(logm; — 1)

J =1{j=U1,---,Jm)|Jx € [nk], Yk € |m|} - multiindices

RMOT : n* = arg min(C, 7T> &E 77H(7T)
7T€H_|_

- . KL: X x X — [0, +o0| - Kulback-Leibler (KL) divergence
s PR KL(T‘-’S) Zﬂ'jl()g&—ﬂ'j Je e dlibgrie N E N
KL(7,7) =

Rk (w):ak

ke|[m] i

+00 otherwise,

¢ = VH*(—C/n) = exp(—C/n) - Gibbs kernel tensor



MOT and RMO' : KL projections point of view

* Sinkhorn-type algorithms are power-horse of optimal transport!

* We approach RMOT with the lenses of (greedy) Bregman projections.

[M={meX|R(7m) = (a1,...,an)} - affine set

T = Pn(§)

Pc(m) := arg min, .- KL(~, ) - KL projection on C
Regularised optimal plan is
Bregman projection of the
kernel onto the affine set

KLe(m) := KL(Pe(m), ) - KL distance of 7 from C

¢ = VH*(—C/n) = exp(—C/n) - Gibbs kernel tensor



Greedy KL projections for entropic RMO'T

= - - vector of batch sizes

e admissible choices

&
i % if ji, € L, I(r) = {(k, L) | k € [m], L C [n&] | |L] < 72}
(PH(k,L) (W))j = Pl
7 otherwise.
: M= (] I,z
KLH(k,L) (7‘(’) — KL(ak|L, Rk(TF)|L) (k,L)EZ(T)
feet—10 1 =
B2 BatchGreenkhorn: ﬁ
choose (k;, L;) € Z(7) : et
ot o () ormulation that allows convergence
analysis
(k¢, Ly) = argmax KLy, ,, (") - efficient implementations are possible

(k,LYeZ(T)



BatchGreenkhorn algorithm

Full marginal step = Sinkhorn Batch step = BatchGreenkhorn
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Key points: ‘ ' '

* the cost of being greedy is
linear in m and n

* dual and marginal updates
can be done in no. of
operations:

~ (full kernel) * (tau / n)

* We can compare w.r.t.
normalised cycles
T=1 pass of cyclic Sinkhorn



BatchGreenkhorn algorithm

Full marginal step = Sinkhorn Batch step = BatchGreenkhorn Coordinate step = Greenkhorn

Key tools for convergence theory: #

*Pythagoras theorem KLp(r*t!) = KL (7?) — KL(#t L, 7%)

R1 (7Tt)

*symmetric Bregman decomposition
*

KL(w*,thKL(wt,w*):<w*—wf,1og”—t>= > (m—m, R(vi—vh))
> ke|m]
— Z ar—Rp(m"), v — vk)
2
Pinsker inequality KL(7,~) > 3|l — lli
— 2|7fls + 4yl

*strong convexity of H and H* on bounded sets



Convergence results

Algorithm (problem) Convergence type Current best Our result
_1,-24/n : _ o= 17[IClloc /M) 2
Sinkhorn (ROT) @ @u) L —ze =" (Carlier, 2021) (1—e ) Theorem 4.5
O( ”C“°°/:+l°g “) (Dvurechensky et al., 2018) O( “Cnll;"’ )
Greenkhorn (ROT) O( IClloo / g"‘log ~) (Lin et al., 2021) O( %) Theorem 4.4
" (1 e—zoucuoo/n)zn/T
BatchGreenkhorn (ROT) 2n/7—1 Theorem 4.4
X O(—”Cnl!;"’ n/T)
" (1 e—(12m—7)||c||oo/"7)m
MultiSinkhorn (RMOT) m—1 Theorem 4.5
O ( m (|| C|] oog"?'i‘log n) ) (Lin et al., 2020) O ( m||77C€||c>o )

Q existing results improved

6 our new results



time [s]

Pertformance w.r.t normalised iterations and time

Computation of free-support Wasserstein Barycenter of 3 histograms of image data

Image size 20x20 reqgularization n =0.2

—e— Cyclic MultiSinkhorn

—»— Greedy MultiSinkhorn

—«— BatchGreenkhorn(25%)
= BatchGreenkhorn(12%)

Image size 18x18

1 —e— Cyclic MultiSinkhorn
—»— Greedy MultiSinkhorn
{1 —+— BatchGreenkhorn(25%)
= BatchGreenkhorn(12%)
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In this simple experiment RMOT for m=3 is
solved for n = 400 (above) and n = 256, 400,
576 (bellow).

Above, we observe that w.r.t. normalised
iterations the Sinkhorn algorithm is less
efficient than the Batch Greenkhorn.

Bellow, we see that Batch Greenkhorn can
even speed up (cyclic / greedy) Sinkhorn by
tuning the batch size to exploit the
adversarial effects of the convergence speed
(iteration complexity) vs. parallelisation of
kernel operations (computational complexity).



Contributions

We introduce and study BatchGreenkhorn as a new algorithmic framework for
RMOT which comes with some theoretical and practical benefits:

“ in bi-marginal OT it covers Sinkhorn and Greenkhorn, in RMOT it covers
(greedy) MultiSinkhorn of Lin et al. (2020)

* we study convergence theory in primal iterates and provide global linear
convergence rate and iteration complexity

“ our results improve existing ones and fill some gaps in literature

* flexibility of the batch provides practical advantages
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