Monarch: Expressive Structured Matrices for Efficient and Accurate Training

Tri Dao, Beidi Chen, Nimit Sohoni, Arjun Desai, Michael Poli Jessica Grogan, Alexander Liu, Aniruddh Rao, Atri Rudra, Christopher Ré

Challenges with structured linear maps (low-rank, sparse, Fourier):

Challenges with structured linear maps (low-rank, sparse, Fourier):

Sparse end-to-end training

Efficiency-quality tradeoffs:

- **Efficiency**: on modern hardware (GPU)
- Quality: how expressive are the weight matrices (can they represent commonly used transforms)

Challenges with structured linear maps (low-rank, sparse, Fourier):

Sparse end-to-end training

Efficiency-quality tradeoffs:

- **Efficiency**: on modern hardware (GPU)
- Quality: how expressive are the weight matrices (can they represent commonly used transforms)

Dense-to-sparse finetuning

 Projection: How to find a sparse/structured matrix closest to a pretrained dense weight matrix

Challenges with structured linear maps (low-rank, sparse, Fourier):

Sparse end-to-end training

Efficiency-quality tradeoffs:

- **Efficiency**: on modern hardware (GPU)
- Quality: how expressive are the weight matrices (can they represent commonly used transforms)

Dense-to-sparse finetuning

 Projection: How to find a sparse/structured matrix closest to a pretrained dense weight matrix Monarch: one of the first sparse training methods to achieve wall-clock speedup while maintaining quality.

Outline

Part 1	Monarch matrices
	Hardware-efficiency Expressiveness Tractable projection from dense weight matrices
Part 2	Ways to use sparse models
	Sparse end-to-end (E2E) training Sparse-to-dense (S2D) training (reverse sparsification)

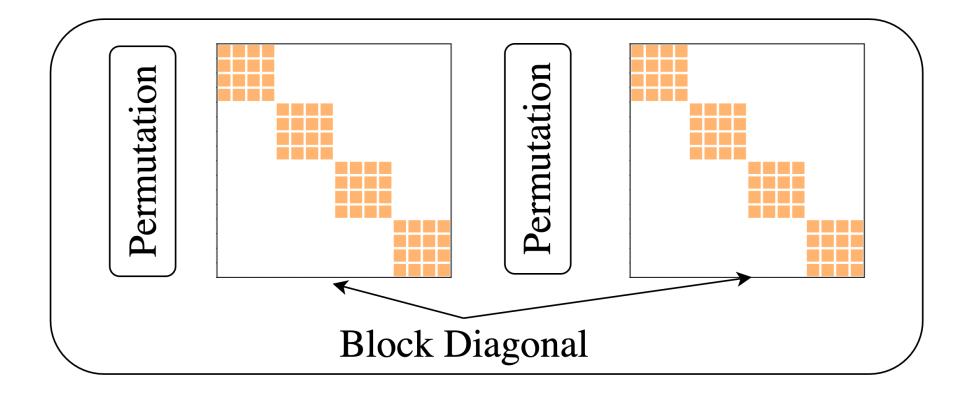
Part 3 Applications

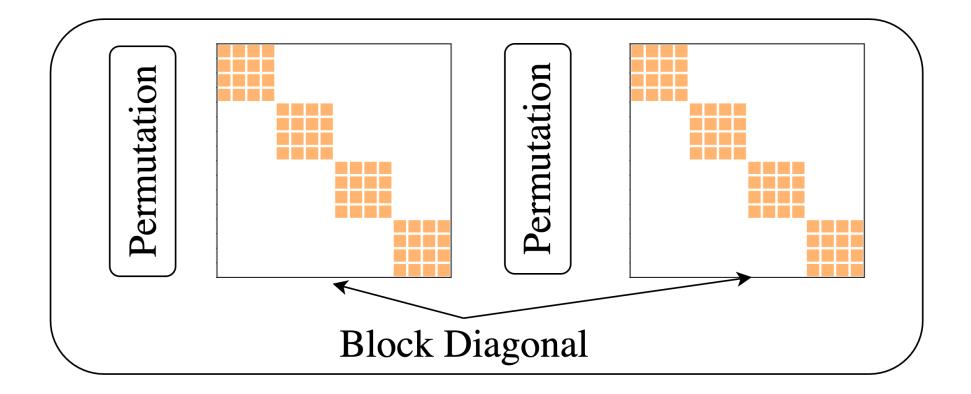
Language modeling, computer vision, PDEs & MRI

Outline

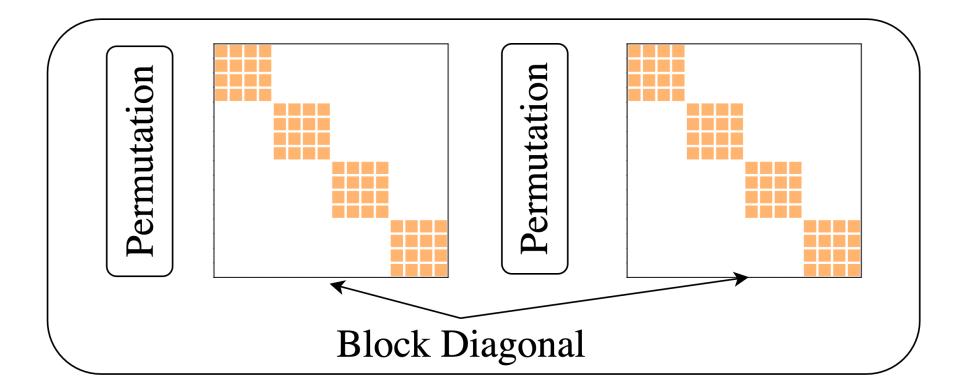
Part 1	Monarch matrices
	Hardware-efficiency Expressiveness Tractable projection from dense weight matrices
Part 2	Three ways to use sparse models
	Sparse end-to-end (E2E) training Sparse-to-dense (S2D) training (reverse sparsification)
Part 3	Applications

Language modeling, computer vision, PDEs & MRI



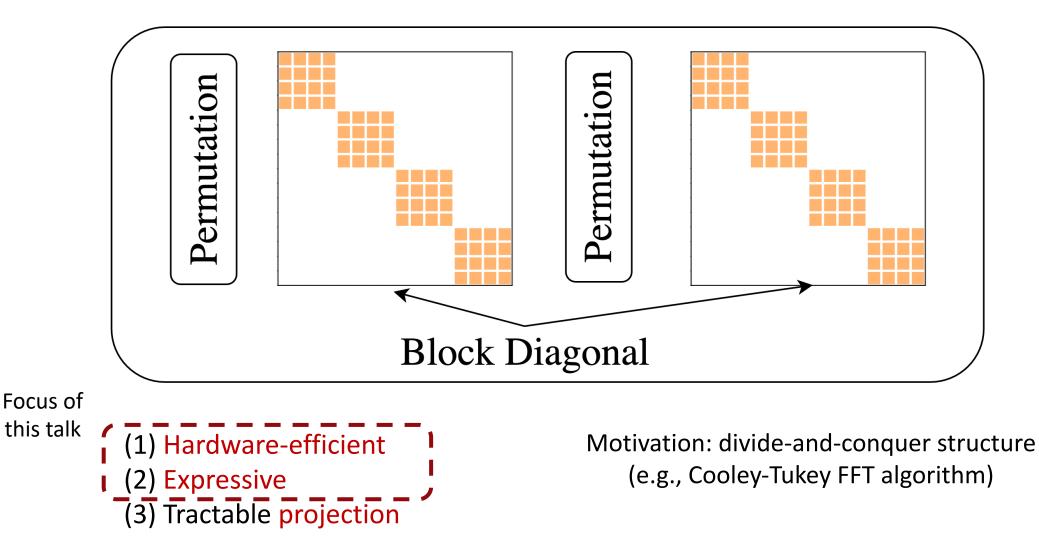


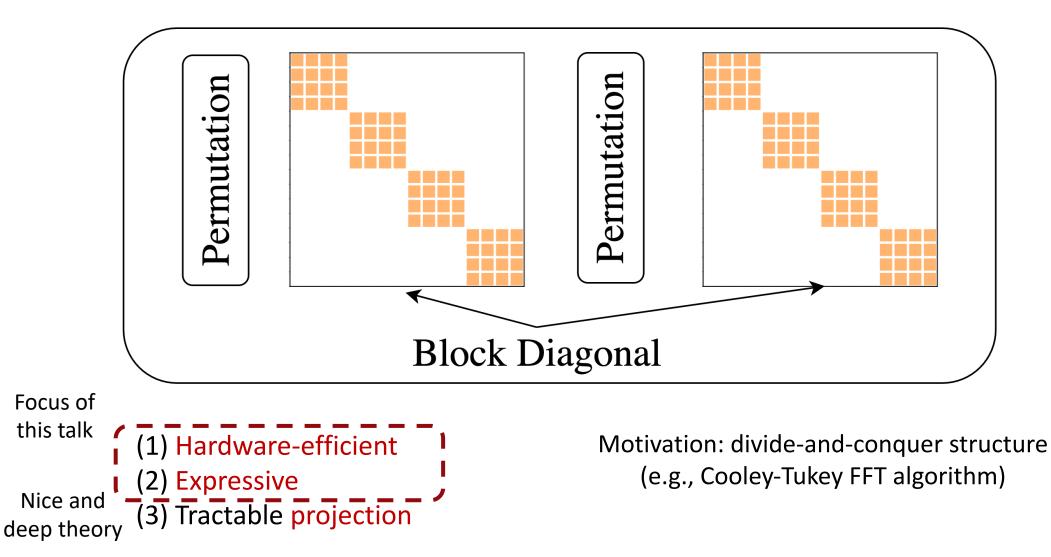
Motivation: divide-and-conquer structure (e.g., Cooley-Tukey FFT algorithm)

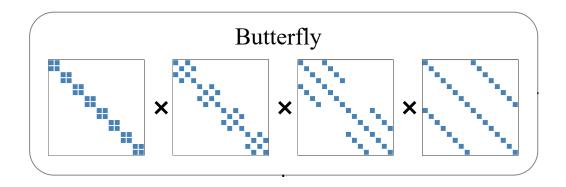


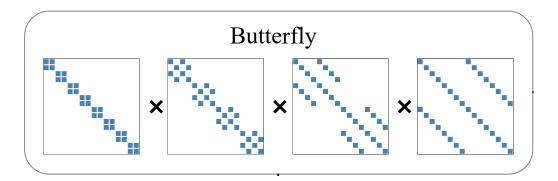
(1) Hardware-efficient(2) Expressive(3) Tractable projection

Motivation: divide-and-conquer structure (e.g., Cooley-Tukey FFT algorithm)

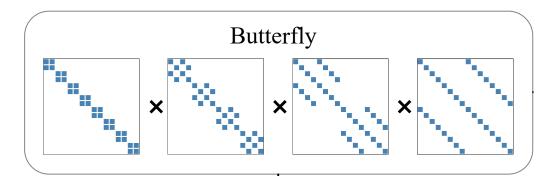






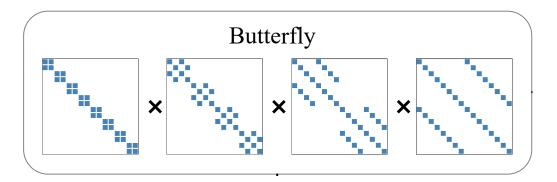


Fast in theory (O(N log N) runtime & parameters Expressive: Can represent any structure (e.g., sparsity) almost optimally



Fast in theory (O(N log N) runtime & parameters Expressive: Can represent any structure (e.g., sparsity) almost optimally

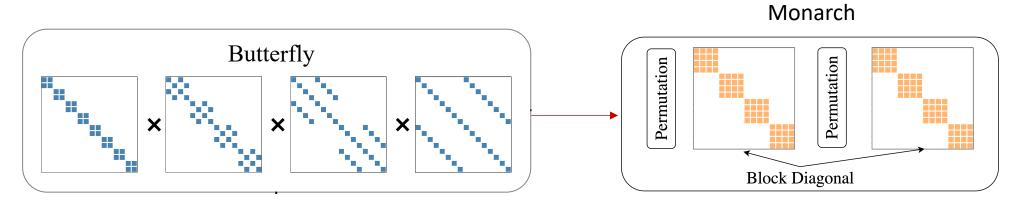
Problem 1: Not block-aligned



Fast in theory (O(N log N) runtime & parameters Expressive: Can represent any structure (e.g., sparsity) almost optimally

Problem 1: Not block-aligned

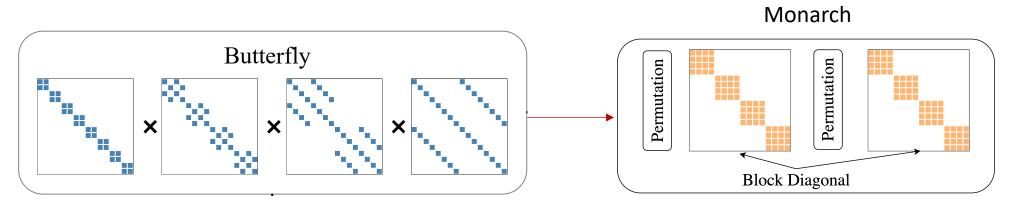
Problem 2: Hard to parallelize the product of many factors



Fast in theory (O(N log N) runtime & parameters Expressive: Can represent any structure (e.g., sparsity) almost optimally

Problem 1: Not block-aligned

Problem 2: Hard to parallelize the product of many factors



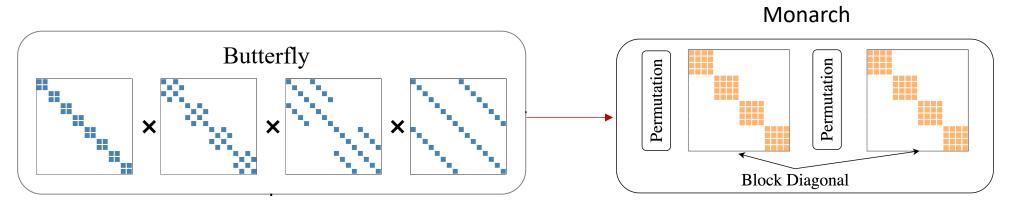
Fast in theory (O(N log N) runtime & parameters Expressive: Can represent any structure (e.g., sparsity) almost optimally

Problem 1: Not block-aligned

Problem 2: Hard to parallelize the product of many factors

[Beneš, 65; Parker, 95; Matthieu & LeCun, 14; De Sa et al., 18, Dao et al., 19]

3-5x faster on GPUs Same expressivity



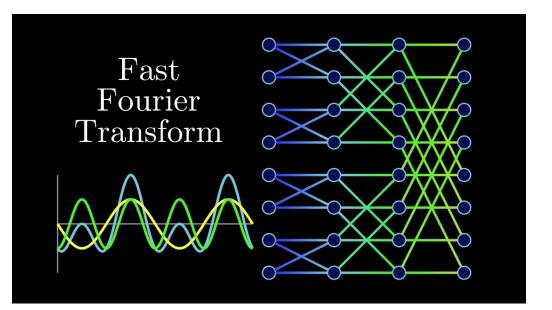
Fast in theory (O(N log N) runtime & parameters Expressive: Can represent any structure (e.g., sparsity) almost optimally 3-5x faster on GPUs Same expressivity

Problem 1: Not block-aligned

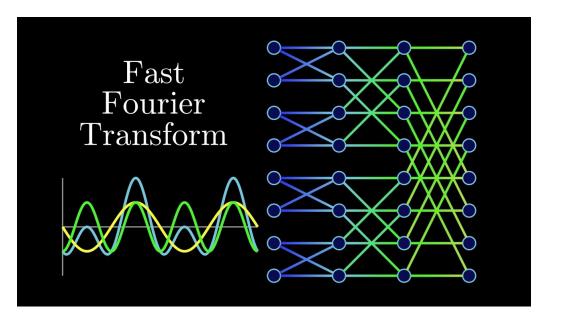
Problem 2: Hard to parallelize the product of many factors

Block-diagonal leverages efficient batch-matrix-multiply on GPUs

Expressiveness: Monarch Can Represent Many Structured Matrices

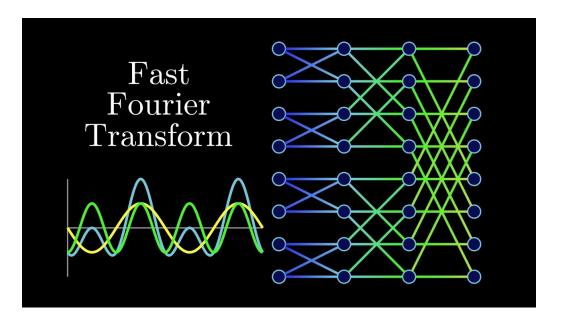


Expressiveness: Monarch Can Represent Many Structured Matrices



(Elementwise) sparsity & low-rank can't represent most of these structures

Expressiveness: Monarch Can Represent Many Structured Matrices



(Elementwise) sparsity & low-rank can't represent most of these structures

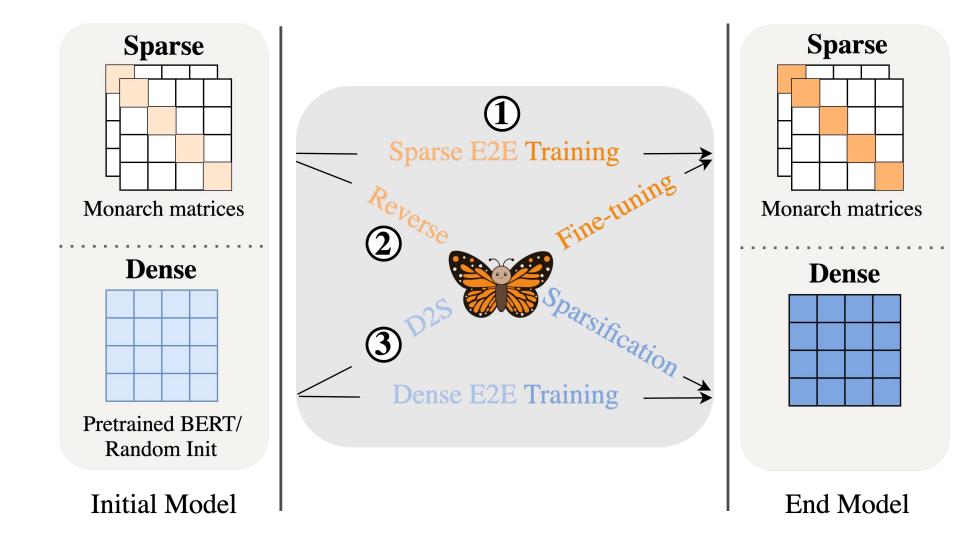
Monarch can represent & learn these structures

Outline

Part 1	Monarch matrices
	Hardware-efficiency Expressiveness Tractable projection from dense weight matrices
Part 2	Ways to use sparse models
	Sparse end-to-end (E2E) training Sparse-to-dense (S2D) training (reverse sparsification)
Part 3	Applications

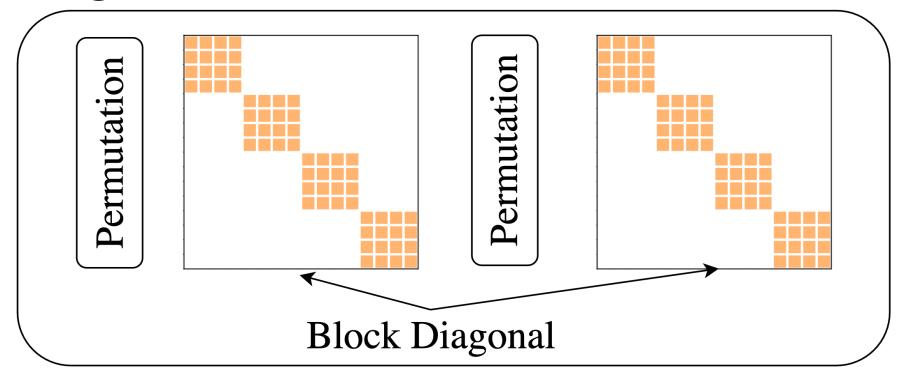
Language modeling, computer vision, PDEs & MRI

Three Ways to Use Sparse Models



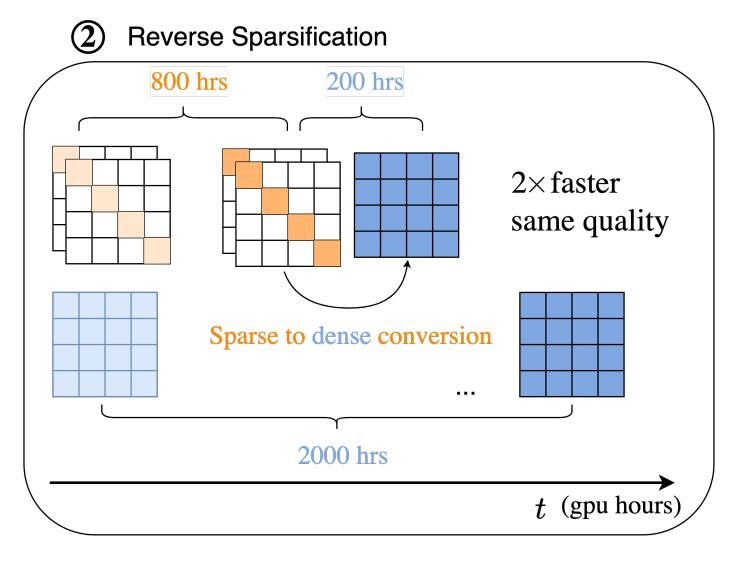
Sparse End-to-End Training

① Sparse E2E Training



Replace dense weight matrices (e.g., attention & FFN) with Monarch matrices for efficiency

Sparse-to-Dense Training (reverse sparsification)



Outline

Par	Monarch matrices	
	Hardware-efficiency Expressiveness Tractable projection from dense weight matrices	5
Par	Ways to use sparse models	
	Sparse end-to-end (E2E) training Sparse-to-dense (S2D) training (reverse sparsif	ication)

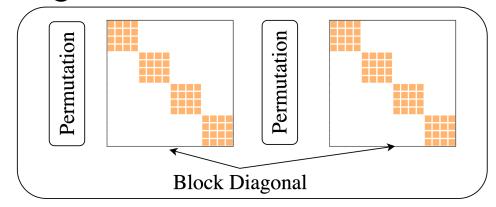
Part 3 Applications

Language modeling, computer vision, PDEs & MRI

Benchmark tasks

Model	WikiText 103(ppl)	Speedup
GPT-2 Small	20.6	-
Monarch GPT-2-small	20.7	1.8 x

(1) Sparse E2E Training

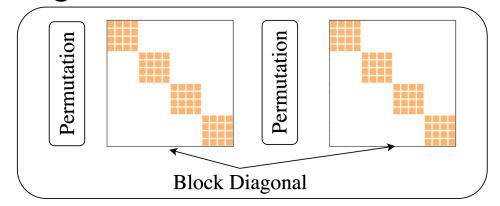


Benchmark tasks

Model	WikiText 103(ppl)	Speedup
GPT-2 Small	20.6	-
Monarch GPT-2-small	20.7	1.8 x

Model	ImageNet (acc)	Speedup
ViT-Base	78.5	-
Monarch ViT-Base	78.7	2.0 x

(1) Sparse E2E Training

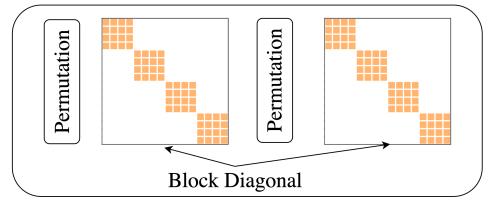


Benchmark tasks

Model	WikiText 103(ppl)	Speedup
GPT-2 Small	20.6	-
Monarch GPT-2-small	20.7	1.8 x

Model	ImageNet (acc)	Speedup
ViT-Base	78.5	-
Monarch ViT-Base	78.7	2.0 x

(1) Sparse E2E Training



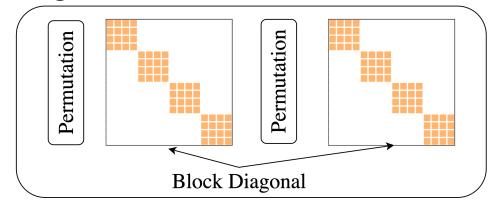
Other applications: PDEs solving, MRI reconstruction

Benchmark tasks

Model	WikiText 103(ppl)	Speedup
GPT-2 Small	20.6	-
Monarch GPT-2-small	20.7	1.8 x

Model	ImageNet (acc)	Speedup
ViT-Base	78.5	-
Monarch ViT-Base	78.7	2.0 x

(1) Sparse E2E Training

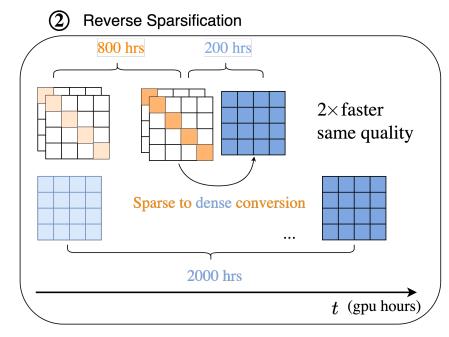


Other applications: PDEs solving, MRI reconstruction

Speeds up training without losing performance 💅!

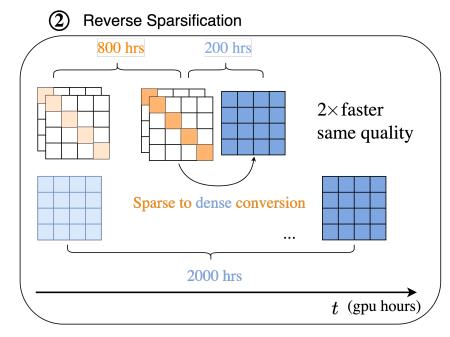
Validation: Sparse-to-Dense Training

BERT Implementation	Training time (h) to the same MLM accuracy
HuggingFace	84.5
Megatron	52.5
Nvidia MLPerf 1.1	30.2
Monarch	23.8



Validation: Sparse-to-Dense Training

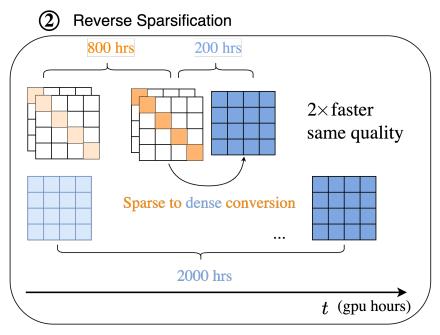
BERT Implementation	Training time (h) to the same MLM accuracy	
HuggingFace	84.5	
Megatron	52.5	
Nvidia MLPerf 1.1	30.2	
Monarch	23.8	



3.5x faster than HuggingFace, 23% faster than Nvidia's MLPerf

Validation: Sparse-to-Dense Training

BERT Implementation	Training time (h) to the same MLM accuracy
HuggingFace	84.5
Megatron	52.5
Nvidia MLPerf 1.1	30.2
Monarch	23.8
Monarch + FlashAttention	21.5



Late breaking results: FlashAttention Fast & mem-efficient exact attention https://github.com/HazyResearch/flash-attention

3.5x faster than HuggingFace, 23% faster than Nvidia's MLPerf

Summary

Code: <u>https://github.com/HazyResearch/monarch</u>

Monarch: hardware-efficient, expressive matrices

Ways to use: sparse end-to-end training, sparse-to-dense training (reverse sparsification)

Upshot: wallclock-time speedup with sparse training, maintaining model quality

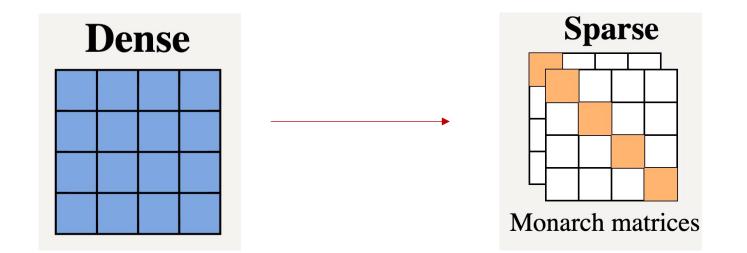
Code: <u>https://github.com/HazyResearch/monarch</u>

Monarch: hardware-efficient, expressive matrices

Ways to use: sparse end-to-end training, sparse-to-dense training (reverse sparsification)

Upshot: wallclock-time speedup with sparse training, maintaining model quality

Code: <u>https://github.com/HazyResearch/monarch</u>

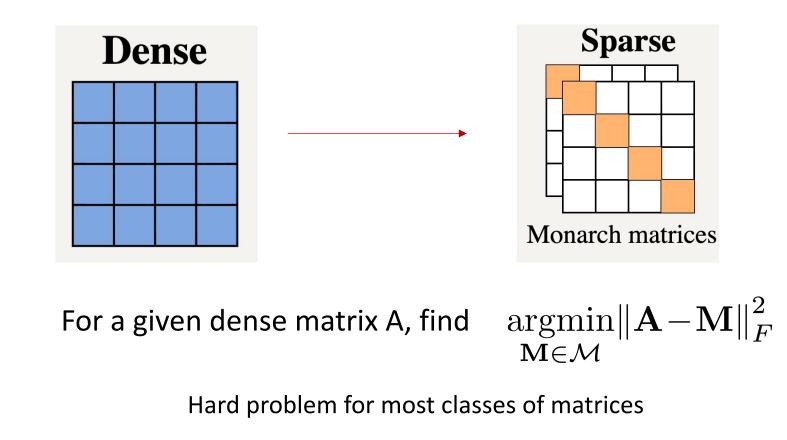


For a given dense matrix A, find $\underset{\mathbf{M}\in\mathcal{M}}{\operatorname{argmin}} \|\mathbf{A}-\mathbf{M}\|_{F}^{2}$



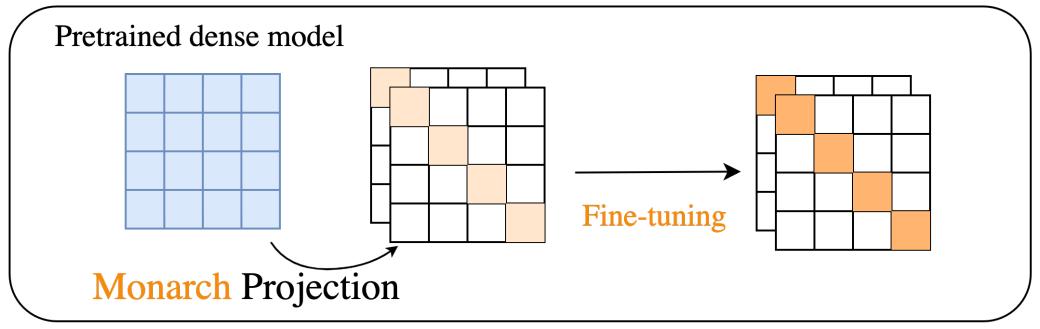
For a given dense matrix A, find $\underset{\mathbf{M}\in\mathcal{M}}{\operatorname{argmin}} \|\mathbf{A} - \mathbf{M}\|_{F}^{2}$

Hard problem for most classes of matrices



Monarch: tractable projection algorithm, analogous to the SVD

Dense-to-sparse finetuning



Validation: dense-to-sparse finetuning

Model	GLUE (avg)	Speedup
BERT-large	80.4	-
Monarch BERT-large	79.6	1.7x

Validation: dense-to-sparse finetuning

Model	GLUE (avg)	Speedup
BERT-large	80.4	-
Monarch BERT-large	79.6	1.7x

Speed up finetuning by trading off some model quality.