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Efficiency-quality tradeoffs: 
• Efficiency: on modern hardware (GPU)

• Quality: how expressive are the weight 
matrices (can they represent commonly used 
transforms)

Dense-to-sparse finetuning

Challenges with structured linear maps (low-rank, sparse, Fourier):

Monarch: one of the first sparse 
training methods to achieve 

wall-clock speedup while maintaining 
quality.
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(1) Hardware-efficient
(2) Expressive
(3) Tractable projection

Motivation: divide-and-conquer structure
(e.g., Cooley-Tukey FFT algorithm)

Focus of
this talk

Nice and 
deep theory
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Problem 2: Hard to parallelize the product of many factors 

[Beneš, 65; Parker, 95; Matthieu & LeCun, 14; De Sa et al., 18, Dao et al., 19]

Monarch

Block-diagonal leverages efficient batch-matrix-multiply on GPUs

3-5x faster on GPUs
Same expressivity

Fast in theory (O(N log N) runtime & parameters
Expressive: Can represent any structure (e.g., sparsity) almost optimally
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(Elementwise) sparsity & low-rank can’t represent most of these structures

Monarch can represent & learn these structures
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Sparse End-to-End Training

Replace dense weight matrices (e.g., attention & FFN) with Monarch matrices for efficiency
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Validation: Sparse End-to-End Training

Model WikiText
103(ppl)

Speedup

GPT-2 Small 20.6 -

Monarch GPT-2-small 20.7 1.8 x

Speeds up training without losing performance 🚀!

Other applications: PDEs solving, MRI reconstruction

Benchmark tasks

Model ImageNet
(acc)

Speedup

ViT-Base 78.5 -

Monarch ViT-Base 78.7 2.0 x



Validation: Sparse-to-Dense Training
BERT Implementation Training time (h) to the same 

MLM accuracy
HuggingFace 84.5

Megatron 52.5

Nvidia MLPerf 1.1 30.2

Monarch 23.8



Validation: Sparse-to-Dense Training
BERT Implementation Training time (h) to the same 

MLM accuracy
HuggingFace 84.5

Megatron 52.5

Nvidia MLPerf 1.1 30.2

Monarch 23.8

3.5x faster than HuggingFace, 23% faster than Nvidia’s MLPerf



Validation: Sparse-to-Dense Training
BERT Implementation Training time (h) to the same 

MLM accuracy
HuggingFace 84.5

Megatron 52.5

Nvidia MLPerf 1.1 30.2

Monarch 23.8

3.5x faster than HuggingFace, 23% faster than Nvidia’s MLPerf

Monarch + FlashAttention 21.5

Late breaking results: FlashAttention
Fast & mem-efficient exact attention

https://github.com/HazyResearch/flash-attention
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Tractable Projection

Monarch: tractable projection algorithm, analogous to the SVD

For a given dense matrix A, find

Hard problem for most classes of matrices
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Validation: dense-to-sparse finetuning

Model GLUE 
(avg)

Speedup

BERT-large 80.4 -

Monarch BERT-large 79.6 1.7x

Speed up finetuning by trading off some model quality.


