=

-

Rotting Infinitely Many-Armed Bandits

Jung-hun Kim?!, Milan Vojnovié?, Se-Young Yun?

LKAIST, 2London School of Economics

1/23

Motivation

Infinitely many-armed bandits with rotting rewards

A variant of multi-armed bandits with infinitely many actions where the mean reward
for a selected action is decreasing.

2/23

Motivation

Infinitely many-armed bandits with rotting rewards

A variant of multi-armed bandits with infinitely many actions where the mean reward
for a selected action is decreasing.

items @ @ @ @

2
%
. @ Click rate: 0.9 —» 0.5 (User boredom)

£

user

Applications
® Decreasing click-through rate from user boredom in recommender systems

3/23

Motivation

Infinitely many-armed bandits with rotting rewards

A variant of multi-armed bandits with infinitely many actions where the mean reward
for a selected action is decreasing.

items @ @ @ @

2

% .
. @ Click rate: 0.9 - 0.5 (User boredom)

£

user

Applications
® Decreasing click-through rate from user boredom in recommender systems

® Decreasing medicine efficacy from drug tolerance in clinical trials
4/23

Related Work

Rotting bandits with finite arms

® This problem deals with finite arms with rotting rewards. Seznec et al. 2019; Seznec
et al. 2020 proposed algorithms achieving O(V KT) regret bound which is the same
as the case of stationary MAB.

5/23

Related Work

Rotting bandits with finite arms

® This problem deals with finite arms with rotting rewards. Seznec et al. 2019; Seznec
et al. 2020 proposed algorithms achieving O(V KT) regret bound which is the same
as the case of stationary MAB.

Infinitely many-armed bandits with stationary rewards

® This problem deals with infinite arms with stationary rewards. Berry et al. 1997;
Wang et al. 2008; Bonald et al. 2013; Bayati et al. 2020 proposed algorithms that
achieve at most O(v/T) in the case of uniformly generated mean rewards.

6/23

Related Work

Rotting bandits with finite arms

® This problem deals with finite arms with rotting rewards. Seznec et al. 2019; Seznec
et al. 2020 proposed algorithms achieving O(V KT) regret bound which is the same
as the case of stationary MAB.

Infinitely many-armed bandits with stationary rewards

® This problem deals with infinite arms with stationary rewards. Berry et al. 1997;
Wang et al. 2008; Bonald et al. 2013; Bayati et al. 2020 proposed algorithms that
achieve at most O(v/T) in the case of uniformly generated mean rewards.

In our work, we consider rotting bandits with infinitely many arms.

7/23

Problem Statement

Rotting rewards
e At time t, an agent selects an arm a; and receives a reward as

re = pe(ae) + ne.

8/23

Problem Statement

Rotting rewards
e At time t, an agent selects an arm a; and receives a reward as

re = pe(ae) + ne.

® The mean reward of the selected arm a; decreases as

per1(ac) = pe(ar) — oe, where 0 < or < 0 = o(1).

9/23

Problem Statement

Rotting rewards
e At time t, an agent selects an arm a; and receives a reward as

re = pe(ae) + ne.

® The mean reward of the selected arm a; decreases as

per1(ac) = pe(ar) — oe, where 0 < or < 0 = o(1).

Infinitely many arms

® There exist infinitely many actions with which an agent deals at each time.

® Each mean reward is generated from the uniform distribution [0, 1].

10/23

Problem Statement

Rotting rewards
e At time t, an agent selects an arm a; and receives a reward as

re = pe(ae) + ne.

® The mean reward of the selected arm a; decreases as

per1(ac) = pe(ar) — oe, where 0 < or < 0 = o(1).
Infinitely many arms
® There exist infinitely many actions with which an agent deals at each time.
® Each mean reward is generated from the uniform distribution [0, 1].

Regret

E[R(T)] = E

11/23

Contributions

® First, we show a regret lower bound

E[R(T)] = Q (max {Q1/3T, ﬁ}) .

12/23

Contributions

® First, we show a regret lower bound

E[R(T)] = Q (max {91/3T, ﬁ}) .

® Knowing the maximum rotting rate g, we propose an algorithm achieving

E[R(T)] = O (max [T VT}).

13/23

Contributions

® First, we show a regret lower bound

E[R(T)] = Q (max {91/3T, ﬁ}) .

® Knowing the maximum rotting rate g, we propose an algorithm achieving

E[R(T)] = O (max [T VT}).

e Without knowing g, we propose another algorithm achieving

E[R(T)] = O (max {91/3T, T3/4}) .

14/23

Challenge

mean reward
good arm
o

-

Rotting

time steps

® Due to rotting, an initially good arm can become a bad arm by pulling the arm
several times.

15/23

Challenge

mean reward
good arm

-

Rotting

time steps

® Due to rotting, an initially good arm can become a bad arm by pulling the arm
several times.

® Therefore, even though we found a good arm at some point, it is necessary to
continue exploring a new good arm over a time horizon T.

16/23

Algorithms

mean reward UCB: if(a) — on(a) ++/8log(T) /n¢(a)

[)) 1
Threshold: 1 — max {93'\/_?}
- ® Remove it and

select a new arm
Rotting

UCB-Threshold Algorithm time steps

® Qur proposed algorithm utilizes UCB (upper confidence bound) and threshold.

17/23

Algorithms

mean reward UCB: if(a) — on(a) ++/8log(T) /n¢(a)

[) 1
Threshold: 1 — max {93'\/_?}
- ® Remove it and
select a new arm
Rotting

UCB-Threshold Algorithm time steps

® Qur proposed algorithm utilizes UCB (upper confidence bound) and threshold.

® The algorithm pulls an arm until its UCB value falls below a threshold value, which
implies that the arm becomes a bad arm.

® Then, it removes the arm and selects a new arm. Repeat this procedure.

18/23

Algorithms

mean reward UCB: if(a) — on(a) ++/8log(T) /n¢(a)

[) 1
Threshold: 1 — max {93'\/_?}
- ® Remove it and
select a new arm
Rotting

UCB-Threshold Algorithm time steps

Our proposed algorithm utilizes UCB (upper confidence bound) and threshold.
The algorithm pulls an arm until its UCB value falls below a threshold value, which
implies that the arm becomes a bad arm.

Then, it removes the arm and selects a new arm. Repeat this procedure.
Information of g is used to determine the UCB and threshold.

19/23

Algorithms

mean reward UCB: if(a) — on(a) ++/8log(T) /n¢(a)

[)) 1
Threshold: 1 — max {93'\/_?}
- ® Remove it and

select a new arm
Rotting

UCB-Threshold Algorithm time steps

® Qur proposed algorithm utilizes UCB (upper confidence bound) and threshold.

® The algorithm pulls an arm until its UCB value falls below a threshold value, which
implies that the arm becomes a bad arm.

® Then, it removes the arm and selects a new arm. Repeat this procedure.

® Information of ¢ is used to determine the UCB and threshold.

e Without knowing g, we propose an adaptive UCB-Threshold algorithm using the
Bandit-over-Bandit approach (Cheung et al. 2019).

20/23

Experiment result

le6
8 UCB-Threshold
—e— Adaptive UCB-Threshold
—=— SSUCB
6
£
& 4
)
2
7/’/'\
0 T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25

1
9/3

® Qur algorithms show robust performance by increasing o compared with SSUCB
(Bayati et al. 2020), which is known to be near-optimal in a stationary setting.

21/23

Thank you

Hall E #1017

References

) W))) D R

Bayati, Mohsen et al. (2020). “Unreasonable effectiveness of greedy algorithms in multi-armed bandit with
many arms”. In: Advances in Neural Information Processing Systems 33, pp. 1713-1723.

Berry, Donald A et al. (1997). “Bandit problems with infinitely many arms”. In: The Annals of Statistics 25.5,
pp. 2103-2116.

Bonald, Thomas and Alexandre Proutiere (2013). “Two-target algorithms for infinite-armed bandits with
bernoulli rewards” . In: Advances in Neural Information Processing Systems 26.

Cheung, Wang Chi, David Simchi-Levi, and Ruihao Zhu (2019). “Learning to optimize under non-stationarity”.
In: The 22nd International Conference on Artificial Intelligence and Statistics. PMLR, pp. 1079-1087.

Seznec, Julien et al. (2019). “Rotting bandits are no harder than stochastic ones”. In: The 22nd International
Conference on Artificial Intelligence and Statistics. PMLR, pp. 2564—2572.

Seznec, Julien et al. (2020). “A single algorithm for both restless and rested rotting bandits”. In: International
Conference on Artificial Intelligence and Statistics. PMLR, pp. 3784-3794.

Wang, Yizao, Jean-Yves Audibert, and Rémi Munos (2008). “Algorithms for infinitely many-armed bandits”.
In: Advances in Neural Information Processing Systems 21.

23/23

	References

