

Rotting Infinitely Many-Armed Bandits

Jung-hun Kim¹, Milan Vojnović², Se-Young Yun¹

¹KAIST, ²London School of Economics

Motivation

Infinitely many-armed bandits with rotting rewards

A variant of multi-armed bandits with **infinitely many actions** where the mean reward for a selected action is **decreasing**.

Motivation

Infinitely many-armed bandits with rotting rewards

A variant of multi-armed bandits with **infinitely many actions** where the mean reward for a selected action is **decreasing**.

Applications

• Decreasing click-through rate from **user boredom** in recommender systems

Motivation

Infinitely many-armed bandits with rotting rewards

A variant of multi-armed bandits with **infinitely many actions** where the mean reward for a selected action is **decreasing**.

Applications

- Decreasing click-through rate from **user boredom** in recommender systems
- Decreasing medicine efficacy from drug tolerance in clinical trials

Related Work

Rotting bandits with finite arms

• This problem deals with finite arms with rotting rewards. Seznec et al. 2019; Seznec et al. 2020 proposed algorithms achieving $\tilde{O}(\sqrt{KT})$ regret bound which is the same as the case of stationary MAB.

Related Work

Rotting bandits with finite arms

• This problem deals with finite arms with rotting rewards. Seznec et al. 2019; Seznec et al. 2020 proposed algorithms achieving $\tilde{O}(\sqrt{KT})$ regret bound which is the same as the case of stationary MAB.

Infinitely many-armed bandits with stationary rewards

• This problem deals with infinite arms with stationary rewards. Berry et al. 1997; Wang et al. 2008; Bonald et al. 2013; Bayati et al. 2020 proposed algorithms that achieve at most $\tilde{O}(\sqrt{T})$ in the case of uniformly generated mean rewards.

Related Work

Rotting bandits with finite arms

• This problem deals with finite arms with rotting rewards. Seznec et al. 2019; Seznec et al. 2020 proposed algorithms achieving $\tilde{O}(\sqrt{KT})$ regret bound which is the same as the case of stationary MAB.

Infinitely many-armed bandits with stationary rewards

• This problem deals with infinite arms with stationary rewards. Berry et al. 1997; Wang et al. 2008; Bonald et al. 2013; Bayati et al. 2020 proposed algorithms that achieve at most $\tilde{O}(\sqrt{T})$ in the case of uniformly generated mean rewards.

In our work, we consider rotting bandits with infinitely many arms.

Rotting rewards

• At time t, an agent selects an arm a_t and receives a reward as

$$r_t = \mu_t(a_t) + \eta_t.$$

Rotting rewards

• At time t, an agent selects an arm a_t and receives a reward as

$$r_t = \mu_t(a_t) + \eta_t.$$

• The mean reward of the selected arm at decreases as

$$\mu_{t+1}(a_t) = \mu_t(a_t) - \varrho_t$$
, where $0 \le \varrho_t \le \varrho = o(1)$.

Rotting rewards

• At time t, an agent selects an arm a_t and receives a reward as

$$r_t = \mu_t(a_t) + \eta_t.$$

The mean reward of the selected arm at decreases as

$$\mu_{t+1}(a_t) = \mu_t(a_t) - \varrho_t$$
, where $0 \le \varrho_t \le \varrho = o(1)$.

Infinitely many arms

- There exist infinitely many actions with which an agent deals at each time.
- Each mean reward is generated from the uniform distribution [0,1].

Rotting rewards

• At time t, an agent selects an arm a_t and receives a reward as

$$r_t = \mu_t(a_t) + \eta_t.$$

• The mean reward of the selected arm at decreases as

$$\mu_{t+1}(a_t) = \mu_t(a_t) - \varrho_t$$
, where $0 \le \varrho_t \le \varrho = o(1)$.

Infinitely many arms

- There exist infinitely many actions with which an agent deals at each time.
- Each mean reward is generated from the uniform distribution [0, 1].

Regret

$$\mathbb{E}[R(T)] = \mathbb{E}\left[\sum_{t=1}^{T} (1 - \mu_t(a_t))\right].$$

Contributions

• First, we show a regret lower bound

$$\mathbb{E}[R(T)] = \Omega\left(\max\left\{arrho^{1/3}T,\sqrt{T}
ight\}
ight).$$

Contributions

• First, we show a regret lower bound

$$\mathbb{E}[R(T)] = \Omega\left(\max\left\{\varrho^{1/3}T,\sqrt{T}\right\}\right).$$

• Knowing the maximum rotting rate ϱ , we propose an algorithm achieving

$$\mathbb{E}[R(T)] = \tilde{O}\left(\max\left\{arrho^{1/3}T,\sqrt{T}
ight\}
ight).$$

Contributions

First, we show a regret lower bound

$$\mathbb{E}[R(T)] = \Omega\left(\max\left\{arrho^{1/3}T,\sqrt{T}
ight\}
ight).$$

• Knowing the maximum rotting rate ϱ , we propose an algorithm achieving

$$\mathbb{E}[R(T)] = \tilde{O}\left(\max\left\{\varrho^{1/3}T, \sqrt{T}\right\}\right).$$

• Without knowing ϱ , we propose another algorithm achieving

$$\mathbb{E}[R(T)] = \tilde{O}\left(\max\left\{\varrho^{1/3}T, T^{3/4}
ight\}\right).$$

Challenge

 Due to rotting, an initially good arm can become a bad arm by pulling the arm several times.

Challenge

- Due to rotting, an initially good arm can become a bad arm by pulling the arm several times.
- Therefore, even though we found a good arm at some point, it is necessary to continue exploring a new good arm over a time horizon *T*.

• Our proposed algorithm utilizes **UCB** (upper confidence bound) and **threshold**.

- Our proposed algorithm utilizes UCB (upper confidence bound) and threshold.
- The algorithm pulls an arm until its UCB value falls below a threshold value, which implies that the arm becomes a bad arm.
- Then, it removes the arm and selects a new arm. Repeat this procedure.

- Our proposed algorithm utilizes UCB (upper confidence bound) and threshold.
- The algorithm pulls an arm until its UCB value falls below a threshold value, which implies that the arm becomes a bad arm.
- Then, it removes the arm and selects a new arm. Repeat this procedure.
- Information of ϱ is used to determine the UCB and threshold.

- Our proposed algorithm utilizes UCB (upper confidence bound) and threshold.
- The algorithm pulls an arm until its UCB value falls below a threshold value, which implies that the arm becomes a bad arm.
- Then, it removes the arm and selects a new arm. Repeat this procedure.
- Information of ρ is used to determine the UCB and threshold.
- Without knowing ϱ , we propose an adaptive UCB-Threshold algorithm using the Bandit-over-Bandit approach (Cheung et al. 2019).

Experiment result

• Our algorithms show robust performance by increasing ϱ compared with SSUCB (Bayati et al. 2020), which is known to be near-optimal in a stationary setting.

Thank you

Hall E #1017

References

Bayati, Mohsen et al. (2020). "Unreasonable effectiveness of greedy algorithms in multi-armed bandit with many arms". In: Advances in Neural Information Processing Systems 33, pp. 1713–1723.

Berry, Donald A et al. (1997). "Bandit problems with infinitely many arms". In: *The Annals of Statistics* 25.5, pp. 2103–2116.

Bonald, Thomas and Alexandre Proutiere (2013). "Two-target algorithms for infinite-armed bandits with bernoulli rewards". In: Advances in Neural Information Processing Systems 26.

Cheung, Wang Chi, David Simchi-Levi, and Ruihao Zhu (2019). "Learning to optimize under non-stationarity". In: *The 22nd International Conference on Artificial Intelligence and Statistics*. PMLR, pp. 1079–1087.

Seznec, Julien et al. (2019). "Rotting bandits are no harder than stochastic ones". In: The 22nd International Conference on Artificial Intelligence and Statistics. PMLR, pp. 2564–2572.

Seznec, Julien et al. (2020). "A single algorithm for both restless and rested rotting bandits". In: *International Conference on Artificial Intelligence and Statistics*. PMLR, pp. 3784–3794.

Wang, Yizao, Jean-Yves Audibert, and Rémi Munos (2008). "Algorithms for infinitely many-armed bandits". In: Advances in Neural Information Processing Systems 21.