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1KAIST, 2London School of Economics

1 / 23



Motivation

Infinitely many-armed bandits with rotting rewards

A variant of multi-armed bandits with infinitely many actions where the mean reward
for a selected action is decreasing.

Applications

• Decreasing click-through rate from user boredom in recommender systems
• Decreasing medicine efficacy from drug tolerance in clinical trials
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Related Work

Rotting bandits with finite arms

• This problem deals with finite arms with rotting rewards. Seznec et al. 2019; Seznec
et al. 2020 proposed algorithms achieving Õ(

√
KT ) regret bound which is the same

as the case of stationary MAB.

Infinitely many-armed bandits with stationary rewards

• This problem deals with infinite arms with stationary rewards. Berry et al. 1997;
Wang et al. 2008; Bonald et al. 2013; Bayati et al. 2020 proposed algorithms that
achieve at most Õ(

√
T ) in the case of uniformly generated mean rewards.

In our work, we consider rotting bandits with infinitely many arms.
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Problem Statement
Rotting rewards
• At time t, an agent selects an arm at and receives a reward as

rt = µt(at) + ηt .

• The mean reward of the selected arm at decreases as

µt+1(at) = µt(at)− ϱt , where 0 ≤ ϱt ≤ ϱ = o(1).

Infinitely many arms
• There exist infinitely many actions with which an agent deals at each time.
• Each mean reward is generated from the uniform distribution [0, 1].

Regret

E[R(T )] = E

[
T∑
t=1

(1− µt(at))

]
.
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Contributions

• First, we show a regret lower bound

E[R(T )] = Ω
(
max

{
ϱ1/3T ,

√
T
})

.

• Knowing the maximum rotting rate ϱ, we propose an algorithm achieving

E[R(T )] = Õ
(
max

{
ϱ1/3T ,

√
T
})

.

• Without knowing ϱ, we propose another algorithm achieving

E[R(T )] = Õ
(
max

{
ϱ1/3T ,T 3/4

})
.

12 / 23



Contributions

• First, we show a regret lower bound

E[R(T )] = Ω
(
max

{
ϱ1/3T ,

√
T
})

.

• Knowing the maximum rotting rate ϱ, we propose an algorithm achieving

E[R(T )] = Õ
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Challenge

• Due to rotting, an initially good arm can become a bad arm by pulling the arm
several times.

• Therefore, even though we found a good arm at some point, it is necessary to
continue exploring a new good arm over a time horizon T .
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Algorithms

• Our proposed algorithm utilizes UCB (upper confidence bound) and threshold.

• The algorithm pulls an arm until its UCB value falls below a threshold value, which
implies that the arm becomes a bad arm.

• Then, it removes the arm and selects a new arm. Repeat this procedure.
• Information of ϱ is used to determine the UCB and threshold.
• Without knowing ϱ, we propose an adaptive UCB-Threshold algorithm using the
Bandit-over-Bandit approach (Cheung et al. 2019).
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Experiment result

• Our algorithms show robust performance by increasing ϱ compared with SSUCB
(Bayati et al. 2020), which is known to be near-optimal in a stationary setting.
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