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Motivation

Infinitely many-armed bandits with rotting rewards

A variant of multi-armed bandits with infinitely many actions where the mean reward
for a selected action is decreasing.

2/23



Motivation

Infinitely many-armed bandits with rotting rewards

A variant of multi-armed bandits with infinitely many actions where the mean reward
for a selected action is decreasing.

items @ @ @ @

2
%
. @ Click rate: 0.9 —» 0.5 (User boredom)

£

user

Applications
® Decreasing click-through rate from user boredom in recommender systems

3/23



Motivation

Infinitely many-armed bandits with rotting rewards

A variant of multi-armed bandits with infinitely many actions where the mean reward
for a selected action is decreasing.
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Applications
® Decreasing click-through rate from user boredom in recommender systems

® Decreasing medicine efficacy from drug tolerance in clinical trials
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Related Work

Rotting bandits with finite arms

® This problem deals with finite arms with rotting rewards. Seznec et al. 2019; Seznec
et al. 2020 proposed algorithms achieving O(V KT) regret bound which is the same
as the case of stationary MAB.
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Related Work

Rotting bandits with finite arms

® This problem deals with finite arms with rotting rewards. Seznec et al. 2019; Seznec
et al. 2020 proposed algorithms achieving O(V KT) regret bound which is the same
as the case of stationary MAB.

Infinitely many-armed bandits with stationary rewards

® This problem deals with infinite arms with stationary rewards. Berry et al. 1997;
Wang et al. 2008; Bonald et al. 2013; Bayati et al. 2020 proposed algorithms that
achieve at most O(v/T) in the case of uniformly generated mean rewards.

In our work, we consider rotting bandits with infinitely many arms.
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Problem Statement

Rotting rewards
e At time t, an agent selects an arm a; and receives a reward as

re = pe(ae) + ne.
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Rotting rewards
e At time t, an agent selects an arm a; and receives a reward as

re = pe(ae) + ne.

® The mean reward of the selected arm a; decreases as

per1(ac) = pe(ar) — oe, where 0 < or < 0 = o(1).
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Problem Statement

Rotting rewards
e At time t, an agent selects an arm a; and receives a reward as

re = pe(ae) + ne.

® The mean reward of the selected arm a; decreases as

per1(ac) = pe(ar) — oe, where 0 < or < 0 = o(1).
Infinitely many arms
® There exist infinitely many actions with which an agent deals at each time.
® Each mean reward is generated from the uniform distribution [0, 1].

Regret

E[R(T)] = E
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Contributions

® First, we show a regret lower bound

E[R(T)] = Q (max {Q1/3T, ﬁ}) .
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Contributions

® First, we show a regret lower bound

E[R(T)] = Q (max {91/3T, ﬁ}) .

® Knowing the maximum rotting rate g, we propose an algorithm achieving

E[R(T)] = O (max [T VT}).
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Contributions

® First, we show a regret lower bound

E[R(T)] = Q (max {91/3T, ﬁ}) .

® Knowing the maximum rotting rate g, we propose an algorithm achieving

E[R(T)] = O (max [T VT}).

e Without knowing g, we propose another algorithm achieving

E[R(T)] = O (max {91/3T, T3/4}) .
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Challenge

mean reward
good arm
o

-

Rotting

time steps

® Due to rotting, an initially good arm can become a bad arm by pulling the arm
several times.
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Challenge

mean reward
good arm

-

Rotting

time steps

® Due to rotting, an initially good arm can become a bad arm by pulling the arm
several times.

® Therefore, even though we found a good arm at some point, it is necessary to
continue exploring a new good arm over a time horizon T.
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Algorithms

mean reward UCB: if(a) — on(a) ++/8log(T) /n¢(a)

[ ) ) 1
Threshold: 1 — max {93'\/_?}
- ® Remove it and

select a new arm
Rotting

UCB-Threshold Algorithm time steps

® Qur proposed algorithm utilizes UCB (upper confidence bound) and threshold.
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® Qur proposed algorithm utilizes UCB (upper confidence bound) and threshold.

® The algorithm pulls an arm until its UCB value falls below a threshold value, which
implies that the arm becomes a bad arm.

® Then, it removes the arm and selects a new arm. Repeat this procedure.
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Algorithms

mean reward UCB: if(a) — on(a) ++/8log(T) /n¢(a)
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Threshold: 1 — max {93'\/_?}
- ® Remove it and
select a new arm
Rotting

UCB-Threshold Algorithm time steps

Our proposed algorithm utilizes UCB (upper confidence bound) and threshold.
The algorithm pulls an arm until its UCB value falls below a threshold value, which
implies that the arm becomes a bad arm.

Then, it removes the arm and selects a new arm. Repeat this procedure.
Information of g is used to determine the UCB and threshold.
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Algorithms

mean reward UCB: if(a) — on(a) ++/8log(T) /n¢(a)

[ ) ) 1
Threshold: 1 — max {93'\/_?}
- ® Remove it and

select a new arm
Rotting

UCB-Threshold Algorithm time steps

® Qur proposed algorithm utilizes UCB (upper confidence bound) and threshold.

® The algorithm pulls an arm until its UCB value falls below a threshold value, which
implies that the arm becomes a bad arm.

® Then, it removes the arm and selects a new arm. Repeat this procedure.

® Information of ¢ is used to determine the UCB and threshold.

e Without knowing g, we propose an adaptive UCB-Threshold algorithm using the
Bandit-over-Bandit approach (Cheung et al. 2019).
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Experiment result
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® Qur algorithms show robust performance by increasing o compared with SSUCB
(Bayati et al. 2020), which is known to be near-optimal in a stationary setting.
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