Online Active Regression

Cheng Chen, Yi Li, Yiming Sun

Division of Mathematical Science, Nanyang Technological University

July 15, 2022

Yiming Sun (NTU)

Linear regression: a method to model the relationship between the data points in Euclidean space and their scalar labels.

Linear regression: a method to model the relationship between the data points in Euclidean space and their scalar labels.

 $\min_{x\in\mathbb{R}^d}\|Ax-b\|_p$ where $A\in\mathbb{R}^{n imes d}$ and $b\in\mathbb{R}^n$

Background

Active linear regression: we can only observe a small number of labels.

Linear regression: a method to model the relationship between the data points in Euclidean space and their scalar labels.

Background

Active linear regression: we can only observe a small number of labels.

Linear regression: a method to model the relationship between the data points in Euclidean space and their scalar labels.

Online extension of regression: the learner receives data points one by one and immediately decides whether it should collect the data point.

In the online learning, for given $A \in \mathbb{R}^{n \times d}$, $b \in \mathbb{R}^n$ and $0 < \epsilon \le 1$, find \tilde{x} such that

$$\|A\widetilde{x} - b\|_{p} \leq (1 + \epsilon) \min_{x \in \mathbb{R}^{d}} \|Ax - b\|_{p},$$

while querying as few labels as possible.

	Queries*	Offline	Space	Runtime
$\ell_{oldsymbol{ ho}}\ oldsymbol{ ho}\in [1,2]$	$ ilde{\mathcal{O}}(rac{d}{\epsilon^2}\log(n\kappa^{OL}))$ †	$ ilde{\mathcal{O}}(rac{d}{\epsilon^2})$	$ ilde{\mathcal{O}}(rac{d^2}{\epsilon^2}\log(n\kappa^{OL}))$	${\sf IPM}{+}n\cdot {\cal O}(d^3\operatorname{poly}(\log n))$
				$\mathcal{O}(nnz(A)\log n) +$
ℓ_2	$ ilde{\mathcal{O}}(rac{d}{\epsilon^2}\log(nrac{\ A\ _2}{\sigma}))$ ‡	$\tilde{\mathcal{O}}(\frac{d}{\epsilon})$	$ ilde{\mathcal{O}}(rac{d^2}{\epsilon^2}\log(nrac{\ A\ _2}{\sigma}))$	$ ilde{\mathcal{O}}ig(rac{d^3}{\epsilon^4}\lograc{\ \mathcal{A}\ _2}{\sigma}\cdot\lograc{1}{\epsilon}(\log n\!+\!d)ig)$

* See the arxiv version for our latest results: https://arxiv.org/abs/2207.05945. † $\kappa^{OL} = ||A||_2 \max_i ||(A^{(i)})^{\dagger}||_2$ where $A^{(i)}$ is the submatrix consisting of the first *i* rows of A. ‡ σ is the smallest singular value of the first *d* rows of A.

Definition 1 (Subspace Embedding)

Let $A \in \mathbb{R}^{n \times d}$ and $S \in \mathbb{R}^{m \times n}$, if $(1 - \epsilon) ||Ax||_p \le ||SAx||_p \le (1 + \epsilon) ||Ax||_p$ holds for any $x \in \mathbb{R}^d$, then S is an ϵ -subspace embedding (ϵ -SE) matrix for A.

Definition 1 (Subspace Embedding)

Let $A \in \mathbb{R}^{n \times d}$ and $S \in \mathbb{R}^{m \times n}$, if $(1 - \epsilon) ||Ax||_p \le ||SAx||_p \le (1 + \epsilon) ||Ax||_p$ holds for any $x \in \mathbb{R}^d$, then S is an ϵ -subspace embedding (ϵ -SE) matrix for A.

General idea to solve linear regression:

$$\min_{x \in \mathbb{R}^d} \|Ax - b\|_p \xrightarrow{\text{generating } \epsilon - \mathsf{SE}} \min_{x \in \mathbb{R}^d} \|SAx - Sb\|_p$$

$$\frac{\tilde{x} = \operatorname{Reg}(SA, Sb, p)}{\operatorname{Reg}(A, b, p) = \arg\min_{x \in \mathbb{R}^d} \|Ax - b\|_p} \|A\tilde{x} - b\|_p \le (1 + \epsilon) \min_{x \in \mathbb{R}^d} \|Ax - b\|_p$$

Cohen and Peng'15 proved that ℓ_p Lewis weights sampling can generate subspace embedding matrix with $\tilde{\mathcal{O}}(\epsilon^{-2}d)$ rows.

Cohen and Peng'15 proved that ℓ_p Lewis weights sampling can generate subspace embedding matrix with $\tilde{O}(\epsilon^{-2}d)$ rows.

Definition 2 (Lewis Weights)

The ℓ_p Lewis weights of A are defined to be $w_i = (a_i^{\top} (A^{\top} W^{1-\frac{2}{p}} A)^{-1} a_i)^{\frac{p}{2}}$, where W is a diagonal matrix with diagonal entries w_1, \ldots, w_n and a_i is the *i*-th row of A.

Sampling matrix $S_{i,i} = p_i^{-\frac{1}{p}}$ with probability p_i , where $p_i = \min\{\beta w_i, 1\}$.

• In the active learning, it is impossible to query every b_i .

• In the online learning, it is impossible to get the whole A.

- In the active learning, it is impossible to query every b_i .
 - Musco et al.'21 solved the active regression in the offline setting by proposing a new algorithm based on ℓ_p lewis weights sampling.
- In the online learning, it is impossible to get the whole A.
 - Braverman et al.'20 solved online ℓ_1 Lewis weights sampling.

$$A \in \mathbb{R}^{n imes d}$$
, $b \in \mathbb{R}^n \xrightarrow{}$ Lewis weights sampling M usco et al. 21 $\widetilde{x} \in \mathbb{R}^d$

$$[A b] \xrightarrow{S \in \mathbb{R}^{\tilde{\mathcal{O}}(d) \times n}} x_c = \operatorname{Reg}(SA, Sb, p)$$

$$A \in \mathbb{R}^{n imes d}$$
, $b \in \mathbb{R}^n$
Lewis weights sampling
Musco et al. 21 $ilde{x} \in \mathbb{R}^d$

Sampling scheme:

$$[A b] \xrightarrow{S \in \mathbb{R}^{\tilde{\mathcal{O}}(d) \times n}} x_c = \operatorname{Reg}(SA, Sb, p) \xrightarrow{S_1 \in \mathbb{R}^{\frac{\tilde{\mathcal{O}}(d) \log n}{c^{2p+5}} \times n}} \hat{x} = \operatorname{Reg}(S_1A, S_1z, p)$$

$$A \in \mathbb{R}^{n imes d}$$
, $b \in \mathbb{R}^n \xrightarrow{}$ Lewis weights sampling M usco et al. 21 $imes x \in \mathbb{R}^d$

Sampling scheme:

$$[A b] \xrightarrow{S \in \mathbb{R}^{\tilde{\mathcal{O}}(d) \times n}} x_c = \operatorname{Reg}(SA, Sb, p) \xrightarrow{S_1 \in \mathbb{R}^{\frac{\tilde{\mathcal{O}}(d) \log n}{c^{2p+5}} \times n}} \hat{x} = \operatorname{Reg}(S_1A, S_1z, p)$$

$$\xrightarrow{\text{output}} \tilde{x} = x_c + \hat{x}$$

For $A \in \mathbb{R}^{n \times d}$, the ℓ_p online Lewis weights of A are defined to be $w_i^{OL}(A) = w_i(A_i)$, where A_i is the submatrix consisting of the first i rows of A.

For $A \in \mathbb{R}^{n \times d}$, the ℓ_p online Lewis weights of A are defined to be $w_i^{OL}(A) = w_i(A_i)$, where A_i is the submatrix consisting of the first i rows of A.

•
$$w_i^{OL}(A) \ge w_i(A)$$

For $A \in \mathbb{R}^{n \times d}$, the ℓ_p online Lewis weights of A are defined to be $w_i^{OL}(A) = w_i(A_i)$, where A_i is the submatrix consisting of the first i rows of A.

For $A \in \mathbb{R}^{n \times d}$, the ℓ_p online Lewis weights of A are defined to be $w_i^{OL}(A) = w_i(A_i)$, where A_i is the submatrix consisting of the first i rows of A.

• $w_i^{OL}(A) \ge w_i(A)$

•
$$\sum_{i} w_i^{OL}(A) = \mathcal{O}(d \log n \log \kappa^{OL}(A))$$

• Runtime to calculate w_i^{OL} is $\mathcal{O}(id^2 + d^3)$; words of space is $\mathcal{O}(id)$.

• Approximate online Lewis weights: $\tilde{w}_i^{OL}(A) = (a_i^{\top} (\tilde{A}_i^{\top} W^{1-\frac{2}{p}} \tilde{A}_i)^{-1} a_i)^{\frac{p}{2}}$. $\tilde{A}_i \xleftarrow{\text{compression algorithm for } \ell_1}{\text{Braverman et al.'20}} A_i$

- Approximate online Lewis weights: $\tilde{w}_{i}^{OL}(A) = (a_{i}^{\top} (\tilde{A}_{i}^{\top} W^{1-\frac{2}{p}} \tilde{A}_{i})^{-1} a_{i})^{\frac{p}{2}}$. $\tilde{A}_{i} \xleftarrow{\text{compression algorithm for } \ell_{1}}_{\text{Braverman et al.'20}} A_{i}$
- Generalize the compression algorithm to ℓ_p .

Technical Contribution

М

Lemma 4

Let $A_i \in \mathbb{R}^{n_i \times d}$ and $B \in \mathbb{R}^{k \times d}$. Let $S_i \in \mathbb{R}^{m_i \times n_i}$ be the sampling matrix for A_i . Then we have with probability at least $1 - \delta$, $(1-\eta)w_{i+\sum_j n_j}(M) \leq w_{i+\sum_j m_j}(M') \leq (1+\eta)w_{i+\sum_j n_j}(M)$

for any
$$i \in [k]$$
 and $m_i = \eta^{-2} d \log(d/\delta)$.

• $\mathcal{O}(\eta^{-2}d \operatorname{poly}(\log n))$ rows in M'.

- $\mathcal{O}(\eta^{-2}d \operatorname{poly}(\log n))$ rows in M'.
- $(1-\eta)w_i^{\mathsf{OL}}(A) \leq \tilde{w}_i^{\mathsf{OL}}(A) \leq (1+\eta)w_i^{\mathsf{OL}}(A)$

- $\mathcal{O}(\eta^{-2}d \operatorname{poly}(\log n))$ rows in M'.
- $(1-\eta)w_i^{\mathsf{OL}}(A) \leq \tilde{w}_i^{\mathsf{OL}}(A) \leq (1+\eta)w_i^{\mathsf{OL}}(A)$
- $\tilde{w}_i^{OL}(A)$ can be applied to online regression.

- $\mathcal{O}(\eta^{-2}d \operatorname{poly}(\log n))$ rows in M'.
- $(1-\eta)w_i^{\mathsf{OL}}(A) \leq \tilde{w}_i^{\mathsf{OL}}(A) \leq (1+\eta)w_i^{\mathsf{OL}}(A)$
- $\tilde{w}_i^{OL}(A)$ can be applied to online regression.
- Time to calculate w̃^{OL}_i(A) is O(η⁻²d³ poly(log <u>n</u>)); words of space is O(η⁻²d poly(log n)).

Experiments

Yiming Sun (NTU)

Online Active Regression

Thank you!