Solving Stackelberg Prediction Game with Least Squares Loss via Spherically **Constrained Least Squares Reformulation**

JIANG, RUJUN

School of Data Science Fudan University

Fudan University June 25, 2022

(Joint work with Jiali Wang, Wen Huang, Xudong Li and Alex L. Wang)

Introduction

- adversarial learning: the data provider attempts to fool models by supplying deceptive input
- stackelberg prediction game (SPG)¹: model the interaction between learner (leader) and data generators (follower)
- applications: intrusion detection, banking fraud detection, spam filtering, malware detection, and cybersecurity adversarial attacks
 - email spam senders design message templates that are instantiated by nodes of botnets; templates are specifically designed to produce a low spam score with current spam filters.
 - a fraudster's goal: maximize the profit made from exploiting phished account information
 - an email service provider's goal: achieve a high spam recognition rate at close-to-zero false positives

¹Brückner, M. and Scheffer, T. Stackelberg games for adversarial prediction problems. KDD 2011.

SPG-LS Problem Statement

given a sample $S = \{(\mathbf{x}_i, y_i, z_i)\}_{i=1}^m$

- $\mathbf{x}_i \in \mathbb{R}^n$, the input example
- y_i , the output labels of interests to the learner
- z_i , the output labels of interests to the data provider

setting: the learner aims to train a linear predictor \mathbf{w} based on S; being aware of the learner's predictor \mathbf{w} , adversarial data provider intends to fool the learner to predict the label z by modifying the input data \mathbf{x} to $\hat{\mathbf{x}}$

• the cost of data provider:

$$\mathbf{x}_{i}^{*} = \underset{\widehat{\mathbf{x}}_{i}}{\operatorname{argmin}} \|\mathbf{w}^{T}\widehat{\mathbf{x}}_{i} - z_{i}\|^{2} + \gamma \|\widehat{\mathbf{x}}_{i} - \mathbf{x}_{i}\|_{2}^{2} \quad i \in [m].$$

• the cost of the learner:

$$\mathbf{w}^* \in \operatorname*{argmin}_{\mathbf{w}} \sum_{i=1}^m \|\mathbf{w}^T \mathbf{x}_i^* - y_i\|^2.$$

Bilevel and QFP Formulations setting $X = {\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_m}^T$ and $\widehat{X} = {\{\widehat{\mathbf{x}}_1, \widehat{\mathbf{x}}_2, ..., \widehat{\mathbf{x}}_m\}^T}$ gives $\min_{\mathbf{w}} \quad ||X^*\mathbf{w} - \mathbf{y}||^2$ s.t. $X^* = \operatorname{argmin}_{\widehat{Y}} ||\widehat{X}\mathbf{w} - \mathbf{z}||^2 + \gamma ||\widehat{X} - X||_F^2$ (1)

optimality condition of lower level problem

$$X^* = \left(\mathbf{z}\mathbf{w}^T + \gamma X\right) \left(\mathbf{w}\mathbf{w}^T + \gamma I\right)^{-1}$$

• use Sherman-Morrison formula

$$X^* \mathbf{w} = \frac{\frac{1}{\gamma} \mathbf{z} \mathbf{w}^T \mathbf{w} + X \mathbf{w}}{1 + \frac{1}{\gamma} \mathbf{w}^T \mathbf{w}}$$

reformulate the bilevel problem into quadratic fractional program (QFP)

$$\min_{\mathbf{w},\alpha} \quad \frac{\|\frac{\alpha}{\gamma}\mathbf{z} + X\mathbf{w} - \mathbf{y} - \frac{\alpha}{\gamma}\mathbf{y}\|^2}{(1 + \frac{\alpha}{\gamma})^2}$$
(2)
s.t. $\alpha = \mathbf{w}^T \mathbf{w}$

Literature Review: Bisection Method

the celebrated Dinkelbach's theorem²: (w, α) is a solution of (2) if and only if the optimal value of (3) is 0

$$F(q) := \min_{\mathbf{w},\alpha} \quad \|\frac{\alpha}{\gamma}\mathbf{z} + X\mathbf{w} - \mathbf{y} - \frac{\alpha}{\gamma}\mathbf{y}\|^2 - q(1 + \frac{\alpha}{\gamma})^2$$

s.t $\alpha = \mathbf{w}^T \mathbf{w}.$ (3)

bisection method³:

- apply a bisection search for q^* such that $F(q^*) = 0$
- each inner subproblem solves (3)
- initial lower and upper bound can be constructed from data

²Dinkelbach,W. On nonlinear fractional programming. Management Science, 13(7):492–498, 1967.

³Bishop, N., Tran-Thanh, L., and Gerding, E. Optimal learning from verified training data. In Advances in Neural Information Processing Systems 33, 2020.

Literature Review: SDP Method⁴

main problem: the following equivalent formulation of SPG-LS

$$\min_{\mathbf{w}, \alpha} \quad \frac{\|\alpha \mathbf{z} + X \mathbf{w} - \mathbf{y} - \alpha \mathbf{y}\|^2}{\left(1 + \alpha\right)^2} \qquad \text{s.t.} \quad \frac{\mathbf{w}^T \mathbf{w}}{\gamma} = \alpha \tag{4}$$

define

$$A = \begin{pmatrix} X^T X & X^T (\mathbf{z} - \mathbf{y}) & -X^T \mathbf{y} \\ (\mathbf{z} - \mathbf{y})^T X & \|\mathbf{z} - \mathbf{y}\|^2 & -(\mathbf{z} - \mathbf{y})^T \mathbf{y} \\ -\mathbf{y}^T X & -\mathbf{y}^T (\mathbf{z} - \mathbf{y}) & \mathbf{y}^T \mathbf{y} \end{pmatrix},$$
$$B = \begin{pmatrix} \mathbf{0}_n \\ 1 & 1 \\ 1 & 1 \end{pmatrix} \text{ and } C = \begin{pmatrix} \frac{I_n}{\gamma} \\ 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 \end{pmatrix}$$

problem (4) is equivalent to the following semidefinite program (SDP)

$$\sup_{\mu,\lambda} \quad \mu \\ \text{s.t.} \qquad A - \mu B + \lambda C \succeq 0$$
(5)

⁴Wang, J., Chen, H., Jiang, R., Li, X., and Li, Z. Fast algorithms for stackelberg prediction game with least squares loss. ICML 2021.

Literature Review: SOCP Method⁵

A, B and C are simultaneously congruent to arrow matrices, i.e.,

$$\tilde{A} = V^T A V = \begin{pmatrix} D & \mathbf{b} \\ \mathbf{b}^T & c \end{pmatrix}, \\ \tilde{B} = V B V = \begin{pmatrix} \mathcal{O}_{n+1} \\ 4 \end{pmatrix}, \\ \tilde{C} = V^T C V = \begin{pmatrix} \frac{1}{\gamma} I_{n+1} \\ -1 \end{pmatrix}.$$

where $D = Diag(d_1, \ldots, d_{n+1}) \in \mathbb{R}^{(n+1) \times (n+1)}$

then LMI $A - \mu B + \lambda C \succeq 0$ is equivalent to

$$\tilde{A} - \mu \tilde{B} + \lambda \tilde{C} \succeq 0, \tag{6}$$

(6) is further equivalent to the second order cone program (SOCP):

$$\sup_{\mu,\lambda,\mathbf{s}} \quad \mu$$
s.t.
$$d_i + \frac{\lambda}{\gamma} \ge 0, \ i \in [n+1],$$

$$c - 4\mu - \lambda - \sum_{i=1}^{n+1} s_i \ge 0,$$

$$s_i(d_i + \frac{\lambda}{\gamma}) \ge b_i^2, \ s_i \ge 0 \ i \in [n+1],$$
(7)

⁵Wang, J., Chen, H., Jiang, R., Li, X., and Li, Z. Fast algorithms for stackelberg prediction game with least squares loss. ICML 2021.

Existing Methods

- Speed: SOCP \gg SDP \gg Bisection
- The SOCP is still not well-suited for solving large-scale SPG-LS, although it is much faster than the SDP approach. The spectral decomposition is time-consuming.
- This paper proposed factorization-free methods for the practical applicability of SPG-LS.

SCLS Reformulation (Main Result)

quadratic fractional programming (QFP) reformulation of SPG-LS

$$\min_{\mathbf{w}, \alpha} \quad v(\mathbf{w}, \alpha) \triangleq \frac{\|\alpha \mathbf{z} + X \mathbf{w} - \mathbf{y} - \alpha \mathbf{y}\|^2}{(1+\alpha)^2}$$
s.t.
$$\frac{\mathbf{w}^T \mathbf{w}}{\gamma} = \alpha$$
(8)

define

$$\tilde{\mathbf{w}}\coloneqq \frac{2}{\sqrt{\gamma}(\alpha+1)}\mathbf{w} \quad \text{and} \quad \tilde{\alpha}\coloneqq \frac{\alpha-1}{\alpha+1},$$

then (8) is equivalent to the Spherically Constrained Least Squares (SCLS)

$$\min_{\tilde{\mathbf{w}},\tilde{\alpha}} \quad \tilde{v}(\tilde{\mathbf{w}},\tilde{\alpha}) \triangleq \left\| \frac{\tilde{\alpha}}{2} \mathbf{z} + \frac{\sqrt{\gamma}}{2} X \tilde{\mathbf{w}} - (\mathbf{y} - \frac{\mathbf{z}}{2}) \right\|^{2}$$
s.t.
$$\tilde{\mathbf{w}}^{T} \tilde{\mathbf{w}} + \tilde{\alpha}^{2} = 1.$$
(9)

Let $\mathbf{r} = \left(\begin{smallmatrix} \tilde{\mathbf{w}} \\ \tilde{\alpha} \end{smallmatrix} \right)$, we have compact form

$$\min_{\mathbf{r}} q(\mathbf{r}) \quad \text{s.t. } \mathbf{r}^T \mathbf{r} = 1,$$

where $q(\mathbf{r})$ is a least squares

$$q(\mathbf{r}) = \|\widehat{L}\mathbf{r} - (\mathbf{y} - \mathbf{z}/2)\|_2^2 = \mathbf{r}^T H \mathbf{r} + 2\mathbf{g}^T \mathbf{r} + p$$

Sketch of Proof

given a feasible solution in (8), construct a feasible solution with the same objective value in (9) and vice versa

• Suppose (\mathbf{w}, α) is a feasible solution of (8). Then $(\tilde{\mathbf{w}}, \tilde{\alpha})$, defined as

$$ilde{\mathbf{w}}\coloneqq rac{2}{\sqrt{\gamma}(lpha+1)}\mathbf{w} \quad \text{and} \quad ilde{lpha}\coloneqq rac{lpha-1}{lpha+1},$$

is feasible to (9) and $v(\mathbf{w}, \alpha) = \tilde{v}(\tilde{\mathbf{w}}, \tilde{\alpha})$.

• Suppose $(\tilde{\mathbf{w}}, \tilde{\alpha})$ is feasible to (8) with $\tilde{\alpha} \neq 1$. Then (\mathbf{w}, α) , defined as

$$\mathbf{w} \coloneqq \frac{\sqrt{\gamma}}{1 - \tilde{lpha}} \tilde{\mathbf{w}} \quad \text{and} \quad \alpha \coloneqq \frac{1 + \tilde{lpha}}{1 - \tilde{lpha}},$$

is feasible to (9) and $\tilde{v}(\tilde{\mathbf{w}}, \tilde{\alpha}) = v(\mathbf{w}, \alpha)$.

Practical Algorithms for SCLS

1 Krylov Subspace Method

- (k+1)st Krylov subspace: $\mathcal{K}_k := \{\mathbf{g}, H\mathbf{g}, H^2\mathbf{g}, \dots, H^k\mathbf{g}\}$ • $Q_k = [\mathbf{q}_0, \mathbf{q}_1, \dots, \mathbf{q}_k] \in \mathbb{R}^{(n+1) \times (k+1)}$: an orthonormal basis
- $Q_k = [\mathbf{q}_0, \mathbf{q}_1, \dots, \mathbf{q}_k] \in \mathbb{R}^{(n+1) \times (k+1)}$: an orthonormal basis produced by the generalized Lanczos process
- subproblem in (k+1)st Krylov subspace:

$$\min_{r \in \mathcal{K}_k, \|\mathbf{r}\| = 1} \mathbf{r}^T H \mathbf{r} + 2\mathbf{g}^T \mathbf{r} + p.$$

Convergence rate ⁶

Lagrangian multiplier λ ; $\kappa = \frac{\lambda_{\max} + \lambda^*}{\lambda_{\min} + \lambda^*}$ condition number of the SCLS

• If $\kappa < \infty$: $f(\mathbf{r}_k) - f(\mathbf{r}^*) \le \mathcal{O}(\exp(-k/\sqrt{\kappa}))$

• If g is perturbed with random vector: $f(\mathbf{r}_k) - f(\mathbf{r}^*) \leq \tilde{\mathcal{O}}(1/k^2)$ In summary, $\tilde{\mathcal{O}}(N/\sqrt{\epsilon})$ time algorithms for an ϵ optimal solution

⁶Carmon, Y. and Duchi, J. C. Analysis of krylov subspace solutions of regularized nonconvex quadratic problems. In *NeurIPS*, pp. 10728–10738, 2018.

2 Riemannian Trust Region Newton (RTRNewton) Method⁷

• manifold: unit sphere $S^n = {\mathbf{r} \in \mathbb{R}^{n+1} : \mathbf{r}^T \mathbf{r} = 1}$

- similar to standard trust region Newton method
- both Riemannian gradient and Riemannian hessian vector product can be obtained in $\mathcal{O}(n^2)$ or $\mathcal{O}(N)$

Convergence rate

• local convergence: grad $q(\mathbf{r}^*) = 0$, Hess $q(\mathbf{r}^*) \succeq 0$

$$\operatorname{dist}(\mathbf{r}_{k+1},\mathbf{r}^*) \leq c \operatorname{dist}(\mathbf{r}_k,\mathbf{r}^*)^2$$

• global convergence: $\|\operatorname{grad}(q(x))\| \leq \epsilon_g$, iteration complexity $\mathcal{O}\left(\epsilon_g^{-2}\right)$

⁷Absil, Baker, and Gallivan] Absil, P.-A., Baker, C. G., and Gallivan, K. A. Trust-region methods on riemannian manifolds. *Foundations of Computational Mathematics*, 7(3):303–330, 2007.

Complexity Comparison

RTRNewton cannot guarantee global minimum, iteration complexity $\mathcal{O}\left(\epsilon_{g}^{-2}\right)$

- 1 Krylov subspace method
 - sparse case: $\mathcal{O}(N \log(1/\epsilon))$ if $\kappa < \infty$; in general $\tilde{\mathcal{O}}(N/\sqrt{\epsilon})$
 - dense case: $\mathcal{O}(n^2 \log(1/\epsilon))$ if assume $m = \mathcal{O}(n)$ and $\kappa < \infty$; in general $\tilde{\mathcal{O}}(n^2/\sqrt{\epsilon})$
- 2 SOCP method: $\mathcal{O}\left(n^w + n^{\frac{3}{2}}\log(1/\epsilon)\right), 2 < w < 3$

formulate matrix A + spectral decomposition + IPM for SOCP

however, no implementable algorithm for spectral decomposition with complexity $\mathcal{O}(n^w)$

Experiments: Real Datasets

Experiments: Real Datasets

Experiments: Synthetic Datasets

Table 1: Time (seconds) comparison on dense data

m = 2n

m	$\gamma=0.1$						$\gamma=0.01$						
	n	SOCP (eig time)	RTRNew	LTRSR	Ratio	n	SOCP (eig time)	RTRNew	LTRSR	Ratio			
2000	1000	0.585 (0.064)	0.743	0.034	17	1000	0.619 (0.087)	0.712	0.031	20			
4000 8000	2000	1.957 (0.317)	2.459 9.269	0.177	11	2000	2.244 (0.419)	2.519	0.138	10			
12000	6000	29.304 (9.444)	18.824	2.120	14	6000	33.093 (11.903)	15.857	2.135	16			
16000	8000	58.561 (21.634)	40.711	3.982	15	8000	66.816 (27.466)	38.501	3.768	18			
20000	10000	114.376 (49.754)	59.768	6.099	19	10000	118.044 (49.477)	59.551	5.916	20			
m = n													
m	I	$\gamma =$	- 0.1				$\gamma =$	0.01					
m	n	γ = SOCP (eig time)	0.1 RTRNew	LTRSR	Ratio	n	$\gamma =$ SOCP (eig time)	0.01 RTRNew	LTRSR	Ratio			
m 1000	n 1000	$\gamma = $ SOCP (eig time) 0.454 (0.065)	0.1 RTRNew 0.594	LTRSR 0.017	Ratio 27	n 1000	$\gamma =$ SOCP (eig time) 0.564 (0.086)	0.01 RTRNew 0.704	LTRSR 0.020	Ratio 28			
m 1000 2000	n 1000 2000	γ = SOCP (eig time) 0.454 (0.065) 2.104 (0.325)	0.1 RTRNew 0.594 2.600	LTRSR 0.017 0.097	Ratio	n 1000 2000	$\gamma =$ SOCP (eig time) 0.564 (0.086) 1.900 (0.471)	0.01 RTRNew 0.704 1.828	LTRSR 0.020 0.098	Ratio 28 19			
m 1000 2000 4000	n 1000 2000 4000	γ = SOCP (eig time) 0.454 (0.065) 2.104 (0.325) 10.795 (2.698)	0.1 RTRNew 0.594 2.600 6.958	LTRSR 0.017 0.097 0.478	Ratio 27 22 23	n 1000 2000 4000	$\gamma = \\ \text{SOCP (eig time)} \\ 0.564 (0.086) \\ 1.900 (0.471) \\ 11.597 (3.539) \\ \end{cases}$	0.01 RTRNew 0.704 1.828 6.789	LTRSR 0.020 0.098 0.499	Ratio 28 19 23			
m 1000 2000 4000 6000	n 1000 2000 4000 6000	γ = SOCP (eig time) 0.454 (0.065) 2.104 (0.325) 10.795 (2.698) 28.391 (9.481)	0.1 RTRNew 0.594 2.600 6.958 17.835	LTRSR 0.017 0.097 0.478 1.083	Ratio 27 22 23 26	n 1000 2000 4000 6000	$\gamma =$ SOCP (eig time) 0.564 (0.086) 1.900 (0.471) 11.597 (3.539) 31.262 (11.691)	0.01 RTRNew 0.704 1.828 6.789 18.617	LTRSR 0.020 0.098 0.499 1.053	Ratio 28 19 23 30			
m 1000 2000 4000 6000 8000	n 1000 2000 4000 6000 8000	γ = SOCP (eig time) 0.454 (0.065) 2.104 (0.325) 10.795 (2.698) 28.391 (9.481) 55.263 (21.555) 07.392 (40.001)	0.1 RTRNew 0.594 2.600 6.958 17.835 35.510 59.000	LTRSR 0.017 0.097 0.478 1.083 2.011	Ratio 27 22 23 26 27 22	n 1000 2000 4000 6000 8000	$\gamma = \\ SOCP (eig time) \\ 0.564 (0.086) \\ 1.900 (0.471) \\ 11.597 (3.539) \\ 31.262 (11.691) \\ 63.983 (27.512) \\ 100 516 (50.018)$	0.01 RTRNew 0.704 1.828 6.789 18.617 34.655 54.060	LTRSR 0.020 0.098 0.499 1.053 1.984 2.049	Ratio 28 19 23 30 32 26			

sparsity =0.01											
m	n	SOCP (eig time)	RTRNew	LTRSR	Ratio						
5000 7500 10000 12500 15000	10000 15000 20000 25000 30000	71.601 (39.432) 217.529 (120.456) 513.751 (288.490) 941.394 (539.619) 1539 443 (865 813)	13.124 26.551 47.411 69.421 113.223	$\begin{array}{c} 0.225 \\ 0.534 \\ 1.049 \\ 1.606 \\ 2.416 \end{array}$	318 407 490 586 637						
sparsity =0.001											
m	n	SOCP (eig time)	RTRNew	LTRSR	Ratio						
5000 7500 10000 12500 15000	10000 15000 20000 25000 30000	61.587 (45.253) 153.075 (117.389) 335.956 (259.671) 638.175 (491.391) 1082.261 (832.413)	1.416 2.379 5.453 7.715 12.090	$\begin{array}{c} 0.028 \\ 0.053 \\ 0.113 \\ 0.168 \\ 0.235 \end{array}$	2200 2888 2973 3799 4605						

Table 2: Time (seconds) on sparse synthetic data

Thank You!