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Introduction

An Instrument Variable Z is an exogenous variable that affects the treatment T, but does not directly affect the outcome Y.

• Relevance: Z is a cause of T, i.e., P(T | Z) ≠ P(T);  

• Exclusion: Z does not directly affect the outcome Y, i.e., Z⊥Y | T, X;

• Unconfounded: Z is independent of all confounders X, i.e., Z⊥X.
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Identifying Assumption

(1) Linear Assumption:

Instrumental Variable Regression:
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Motivation
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Theory
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Instrumental Variable Regression with Confounder Balancing (CB-IV)

• Treatment Regression (Stage 1)

• Confounder Balancing (Stage 2)

• Outcome Regression (Stage 2)
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Experimental Results

Evaluation Measure Benchmarks

( ) [ | ( ), ] [ | ( 0), ]ATE t Y do T t X Y do T X= = − =E E

The conditional average treatment effect (CATE):

Bias of the conditional average treatment effect: 
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The lower is the better.

Binary Cases

• Systematically varied the dimensions of Z, 

X and U: mZ, mX, mU.

• Naming convention: Syn – mZ – mX – mU

• 10 runs for each trial with 10000 samples

Continuous Cases

• Demand is a common benchmark used in IV

Regressions (Hartford et al., 2017, Singh et al.,

2019, Muandet et al., 2020, Xu et al., 2021).

• Systematically varied the importance of 

instrumental variables and confounders: γ, λ

• Naming convention: Demand – γ – λ

Real-World Datasets

• IHDP/Twins – mZ – mX – mU
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Experimental Results

The results of ATE estimation, including bias (mean(std)), in

(a) Binary Cases (b) Continuous Cases
(c) Real-World Datasets

Conclusion

• The traditional IV-based methods would suffer from the confounding bias from the observed confounders, if the

outcome model is mis-specified and covariates are imbalanced;

• Considering confounder balancing in IV regression, our CB-IV improves considerably over the traditional IV-

based methods and achieves better performance than confounder balancing methods in most settings.

• Extensive experimental results supports the promise of the proposed method and perspective.
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