On the Learning of Non-Autoregressive Transformers

Fei Huang*, Tianhua Tao*, Hao Zhou, Lei Li, Minlie Huang

***: Equal Contribution**

CoAl group, Tsinghua University

Institute for AI Industry Research, Tsinghua University

ByteDance AI Lab

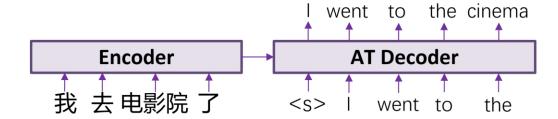
University of California, Santa Barbara

Background

Autoregressive Transformer (AT)

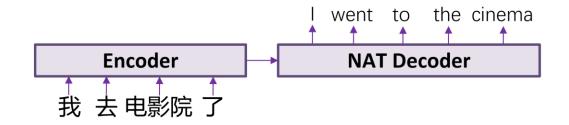
$$\log P_{\theta}^{\mathrm{AT}}(Y|X) = \sum_{i=1}^{M} \log P_{\theta}^{\mathrm{AT}}(y_i|y_{< i}, X)$$

Reduce the inference latency



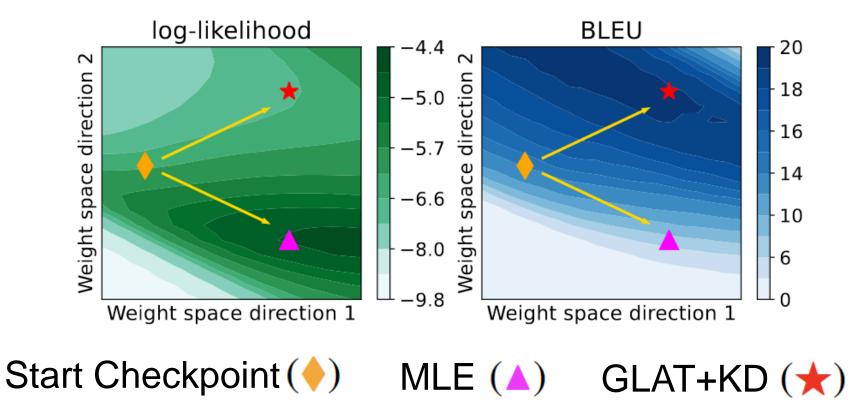
Non-Autoregressive Transformer (NAT)

$$\log P_{\theta}^{\text{NAT}}(Y|X) = \sum_{i=1}^{M} \log P_{\theta}^{\text{NAT}}(y_i|X)$$



NAT Learning is Challenging

• Maximum Likelihood Estimation (MLE) does not leads to higher BLEU

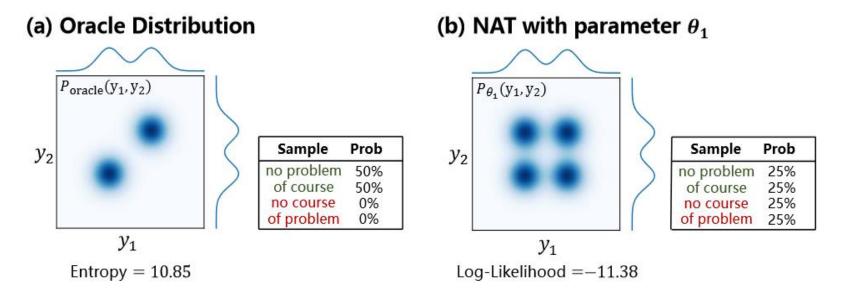


GLAT: Qian et al. Glancing Transformer for Non-Autoregressive Neural Machine Translation. ACL2021 KD: Kim and Rush. Sequence-level Knowledge Distillation. EMNLP2016

Q1: Why is NAT learning **so challenging** that **MLE does not work well**?

Q2: Why are **previously proposed objectives successful** despite they lead to **low likelihood**?

• From intuitive perspective



 Maximizing the likelihood leads to an approximation of marginal distributions, but drops the dependencies between tokens

From theoretical perspective

Theorem 1. For a NAT model $P_{\theta}(Y|X)$, we have $\min_{\theta} \mathcal{D}_{KL}[P_{data}(Y|X)||P_{\theta}(Y|X)] \geq \mathcal{C}$. $\mathcal{C} := \sum_{i=1}^{M} H_{data}(y_i|X) - H_{data}(Y|X)$

C is a **property** of $P_{data}(Y|X)$, called *Conditional Total Correlation* (Watanabe, 1960) It measures **the information of dependencies between target tokens**.

Watanabe. Information theoretical analysis of multi-variate correlation. IBM J. Res. Dev., 1960.

From theoretical perspective

Theorem 1. For a NAT model $P_{\theta}(Y|X)$, we have $\min_{\theta} \mathcal{D}_{KL}[P_{data}(Y|X)||P_{\theta}(Y|X)] \geq \mathcal{C}$. $\mathcal{C} := \sum_{i=1}^{M} H_{data}(y_i|X) - H_{data}(Y|X)$

C is a **property** of $P_{data}(Y|X)$, called *Conditional Total Correlation* (Watanabe, 1960) It measures **the information of dependencies between target tokens**.

Remark 1. For a well-trained NAT in terms of KL divergence, **the dropped** *information can be measured by* C.

Watanabe. Information theoretical analysis of multi-variate correlation. IBM J. Res. Dev., 1960.

From theoretical perspective

Theorem 1. For a NAT model $P_{\theta}(Y|X)$, we have $\min_{\theta} \mathcal{D}_{KL}[P_{data}(Y|X)||P_{\theta}(Y|X)] \geq \mathcal{C}$. $\mathcal{C} := \sum_{i=1}^{M} H_{data}(y_i|X) - H_{data}(Y|X)$

C is a **property** of $P_{data}(Y|X)$, called *Conditional Total Correlation* (Watanabe, 1960) It measures **the information of dependencies between target tokens**.

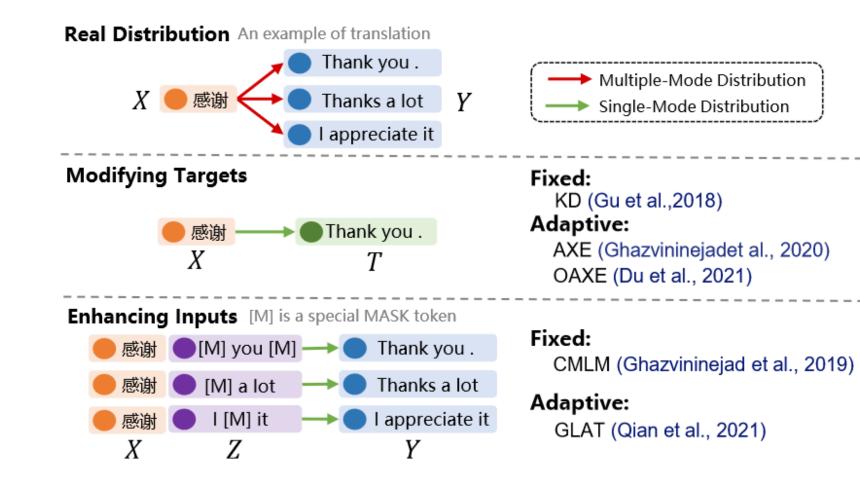
Remark 1. For a well-trained NAT in terms of KL divergence, **the dropped** *information can be measured by* C.

Remark 2. *C represents the difficulties of NAT learning*. *Given the data distribution, an NAT cannot achieve an information loss less than C, regardless of its parameters or training methods.*

Watanabe. Information theoretical analysis of multi-variate correlation. IBM J. Res. Dev., 1960.

Q2: Why previous objectives successful?

Revisit previous objectives



Q2: Why previous objectives successful?

- A Unified Perspective Maximum Proxy-Likelihood Estimation
 - Proxy Distribution Q(T|X,Z)

Q2: Why previous objectives successful?

- A Unified Perspective Maximum Proxy-Likelihood Estimation
 - Proxy Distribution Q(T|X,Z)
 - Unified Objective

 $\mathcal{L}_{\mathbf{MPLE}} = \mathcal{D}_{\mathbf{KL}}(Q||P_{\theta}) + \mathcal{R}(Q, P_{\mathbf{data}})$

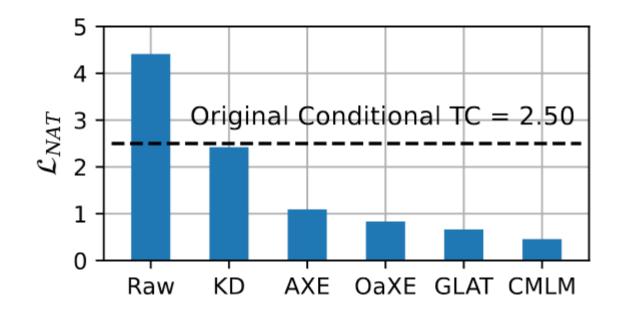
MLE objective on Q instead of P_{data} Data distortion between Q and P_{data}

Q can have a smaller C than P_{data} , thereby reducing information loss

• See the paper for detailed formulation. The unified objective is **quantifiable** and derived by **variational principle**.

Empirical Analysis

Verification of Reduced Information Loss



 $\mathcal{L}_{\text{NAT}} = \mathbb{E}_{Q(Z|X)} \mathcal{D}_{\text{KL}} \left[Q(T|Z, X) || P_{\theta}(T|Z, X) \right]$

1. Utilizing proxy distributions empirically reduces the information loss

Empirical Analysis

Our Objective Strongly Correlated with BLEU

Models	\mathcal{L}_{NAT}	$\hat{\mathcal{L}}_{target}$	$\hat{\mathcal{L}}_{MPLE}$	BLEU
Raw Data	4.41	-6.42	-2.01	11.79
KD	2.42	-7.08	-4.66	20.87
+ AXE (τ =1)	0.78	-5.13	-4.35	18.56
+ AXE (τ =5)	1.09	-6.34	-5.25	22.22
+ AXE (τ =10)	1.25	-6.50	-5.26	22.35
+ OaXE (10k)	1.03	-4.41	-3.38	15.00
+ OaXE (50k)	0.79	-5.84	-5.06	21.37
+ OaXE (300k)	0.83	-6.28	-5.44	22.76

Pearson's |r| = 0.99 for WMT14 En-De |r| = 0.96 on WMT17 Zh-En

2.	Our objective jointly considers
	information loss and data
	distortion, which correlates well
	with generation performance

Other Results & Analysis

- Our perspective can apply to many previous work in NAT learning, including
 - iterative NATs
 - latent variable models
 - CTC
 - DA-Transformer (our other work at ICML, which improves noniterative NATs by 3 BLEU)

Other Results & Analysis

- Our perspective can apply to many previous work in NAT learning, including
 - iterative NATs
 - latent variable models
 - CTC
 - DA-Transformer (our other work at ICML, which improves noniterative NATs by 3 BLEU)
- Our objective can guide the design of new training methods.
- About masking strategies, decoding methods

Thanks for Your Attention

Acknowledgement: Yuxuan Song

If you are interested, welcome to see our other paper at ICML2022!

Directed Acyclic Transformer for Non-Autoregressive Machine Translation

Institute for AI Industry Research, Tsinghua University

University of California, Santa Barbara