Tian Li (CMU)

Manzil Zaheer (DeepMind)

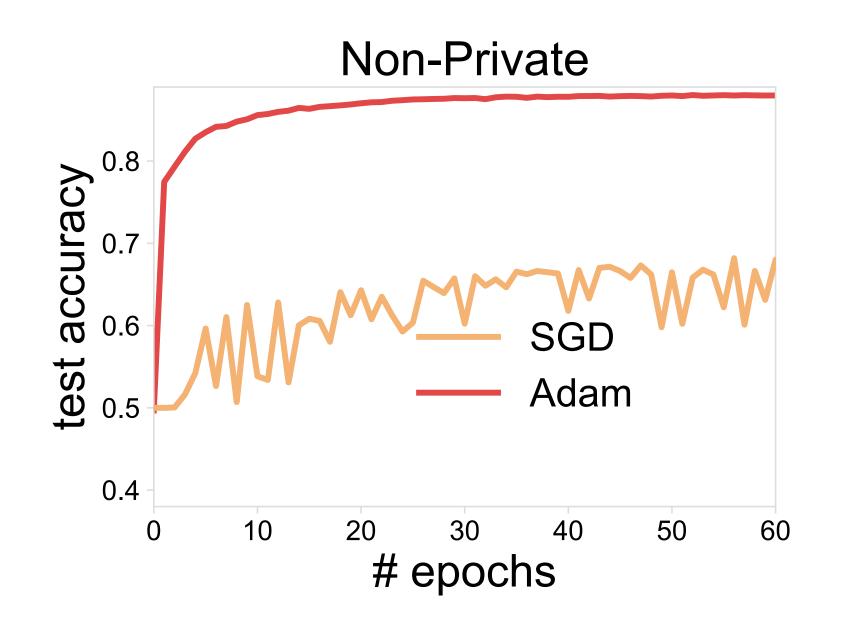
Sashank Reddi (Google Research)

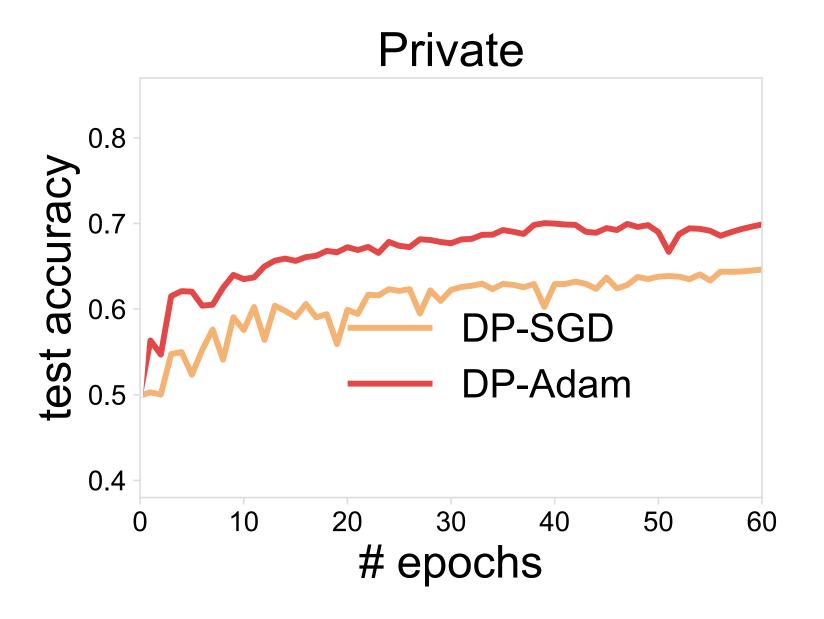
Virginia Smith (CMU)

 Adaptive optimizers (e.g., Adam, AdaGrad, RMSProp) are useful for a variety of ML tasks

- Adaptive optimizers (e.g., Adam, AdaGrad, RMSProp) are useful for a variety of ML tasks
- However, performance may degrade significantly when trained with DP, especially when the model dimension is large

- Adaptive optimizers (e.g., Adam, AdaGrad, RMSProp) are useful for a variety of ML tasks
- However, performance may degrade significantly when trained with DP, especially when the model dimension is large





directly plug in private gradients to estimate the statistics?

directly plug in private gradients to estimate the statistics?

first private the gradients

$$\tilde{g}^t \leftarrow \frac{1}{|B|} \left(\sum_{i \in B} \text{clip}\left(g^{i,t}, C\right) + \mathcal{N}\left(0, \sigma^2 C^2\right) \right)$$

directly plug in private gradients to estimate the statistics?

first private the gradients

$$\tilde{g}^t \leftarrow \frac{1}{|B|} \left(\sum_{i \in B} \text{clip}\left(g^{i,t}, C\right) + \mathcal{N}\left(0, \sigma^2 C^2\right) \right)$$

then plug in private gradients to any adaptive optimization methods

$$m^{t} \leftarrow \beta_{1} m^{t} + (1 - \beta_{1}) \tilde{g}^{t}, \ v^{t} \leftarrow \beta_{2} v^{t} + (1 - \beta_{2}) (\tilde{g}^{t})^{2}$$

$$w^{t+1} \leftarrow w^{t} - \alpha \frac{m^{t}}{\sqrt{v^{t}} + \epsilon}$$

directly plug in private gradients to estimate the statistics?

first private the gradients

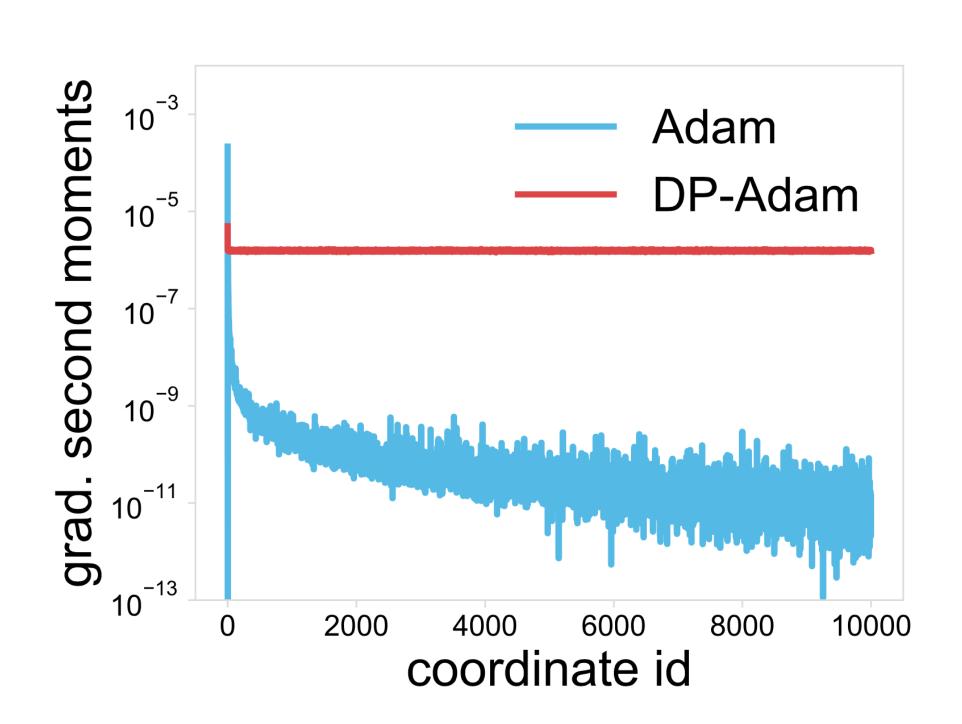
$$\tilde{g}^t \leftarrow \frac{1}{|B|} \left(\sum_{i \in B} \text{clip}\left(g^{i,t}, C\right) + \mathcal{N}\left(0, \sigma^2 C^2\right) \right)$$

then plug in private gradients to any adaptive optimization methods

$$m^{t} \leftarrow \beta_{1} m^{t} + (1 - \beta_{1}) \tilde{g}^{t}, \ v^{t} \leftarrow \beta_{2} v^{t} + (1 - \beta_{2}) (\tilde{g}^{t})^{2}$$

$$w^{t+1} \leftarrow w^{t} - \alpha \frac{m^{t}}{\sqrt{v^{t}} + \epsilon}$$

estimates can be very noisy!



With public data

Estimate gradient statistics on public data at each iteration

With public data

Estimate gradient statistics on public data at each iteration

Without public data

Non-sensitive common knowledge about the training data

e.g., token frequencies in NLP applications

With public data

Estimate gradient statistics on public data at each iteration

Without public data

Non-sensitive common knowledge about the training data

e.g., token frequencies in NLP applications

$$\tilde{g}^t \leftarrow \frac{1}{|B|} \left(\sum_{i \in B} \operatorname{clip} \left(\frac{g^{i,t}}{A}, C \right) + \mathcal{N} \left(0, \sigma^2 C^2 \right) \right), A \approx \sqrt{\mathbb{E} \left[g^2 \right]} + \epsilon$$

A encodes how predictive each coordinate is

preconditioning before privatizing the gradients

$$\tilde{g}^t \leftarrow \frac{1}{|B|} \left(\sum_{i \in B} \operatorname{clip} \left(\frac{g^{i,t}}{A}, C \right) + \mathcal{N} \left(0, \sigma^2 C^2 \right) \right), A \approx \sqrt{\mathbb{E} \left[g^2 \right]} + \epsilon$$

A encodes how predictive each coordinate is

preconditioning before privatizing the gradients

Convergence:

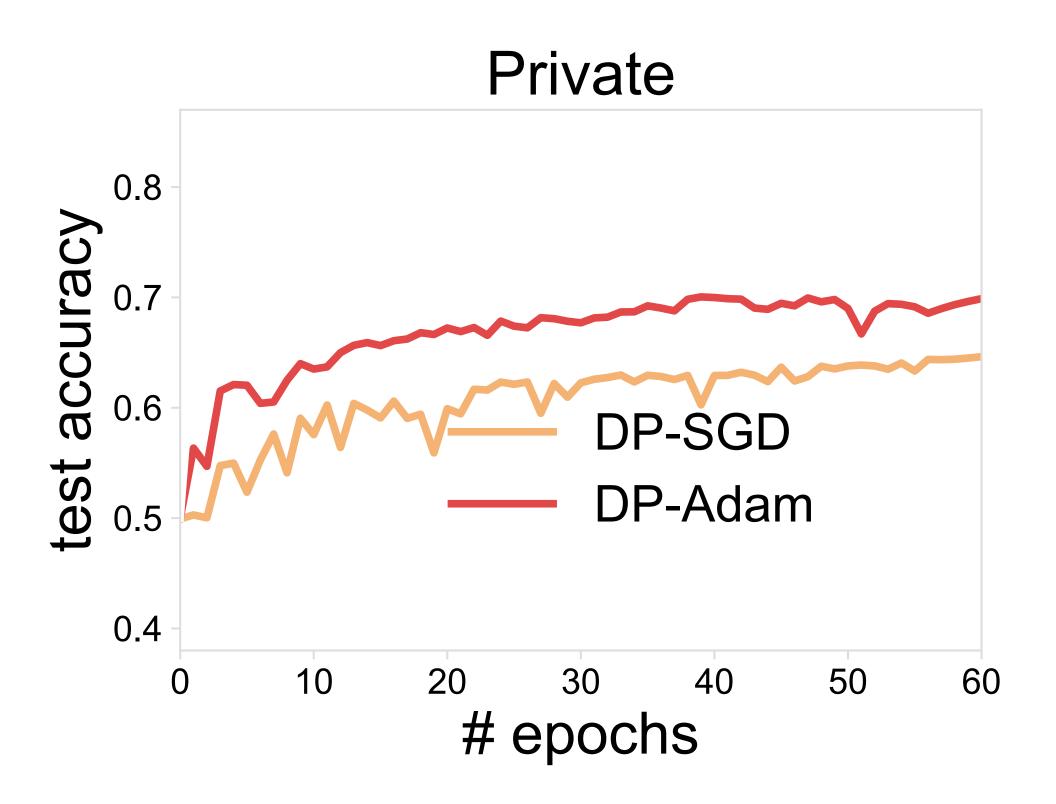
(informal) rate:
$$O\left(\frac{1}{\sqrt{T}}\right) + O\left(\frac{1}{\sqrt{T}} \mathbb{E}\left[\|\mathcal{N}\|_A^2\right]\right)$$

reduced noise when the gradients are sparse

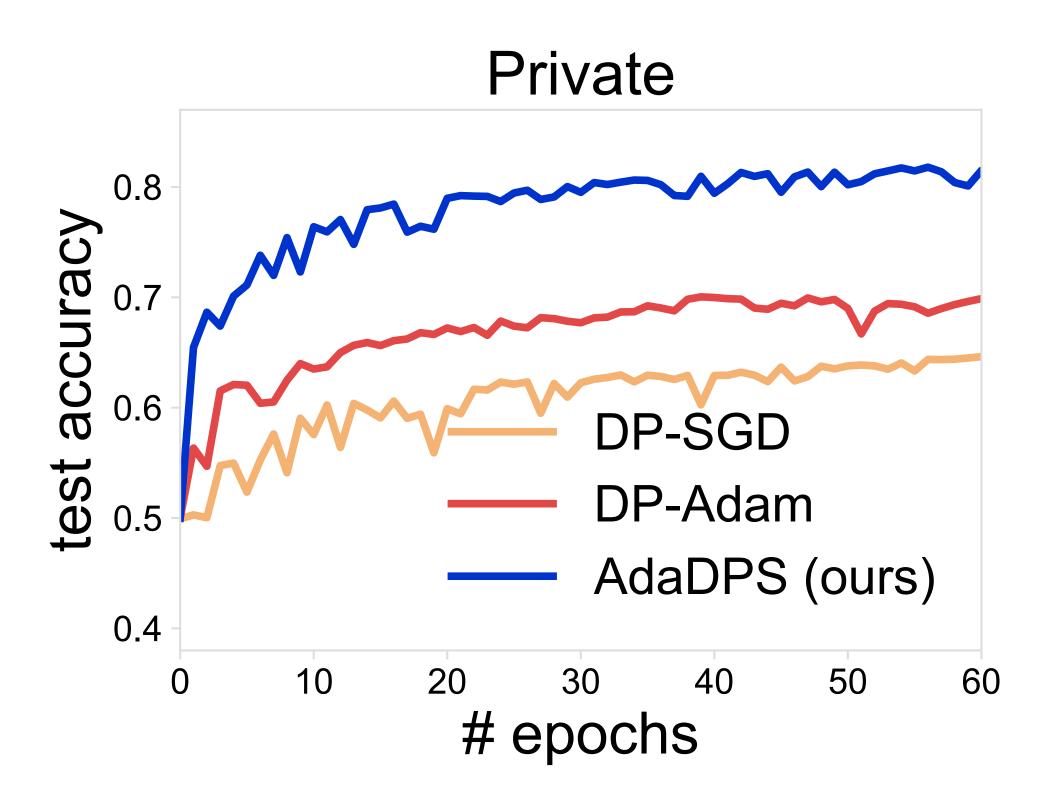
$$\tilde{g}^t \leftarrow \frac{1}{|B|} \left(\sum_{i \in B} \operatorname{clip}\left(\frac{g^{i,t}}{A}, C\right) + \mathcal{N}\left(0, \sigma^2 C^2\right) \right), A \approx \sqrt{\mathbb{E}\left[g^2\right]} + \epsilon$$

A encodes how predictive each coordinate is

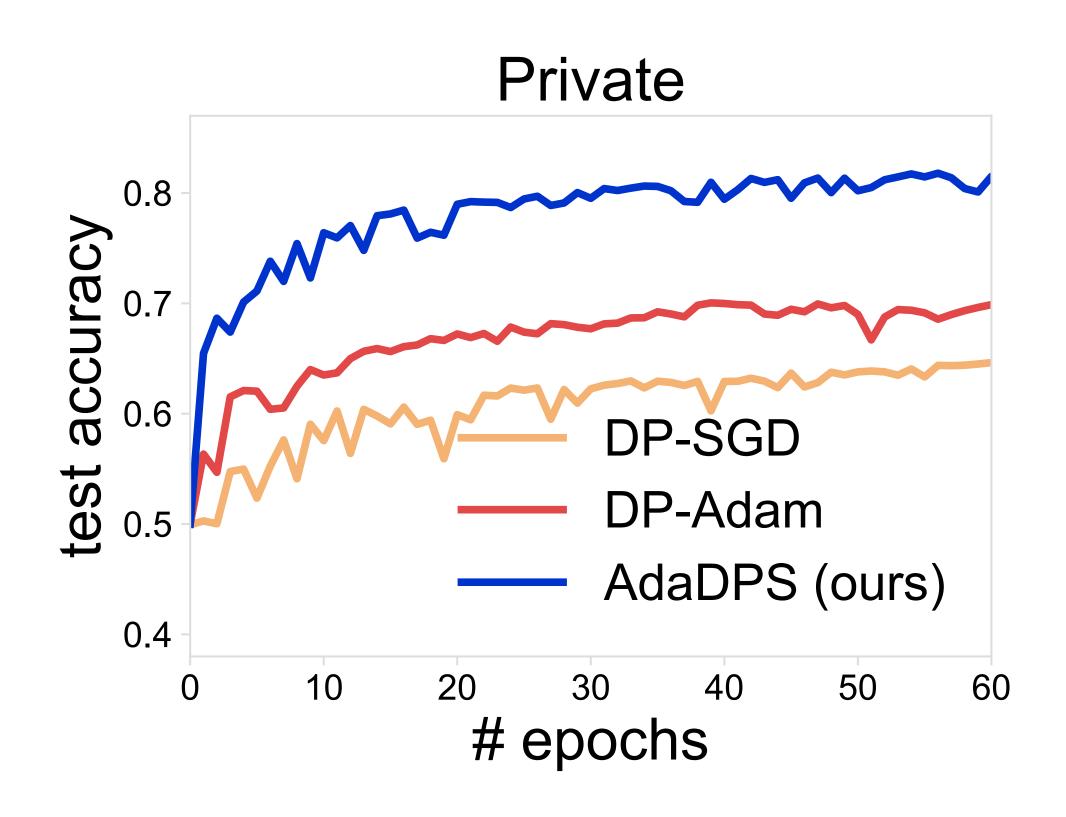
preconditioning before privatizing the gradients

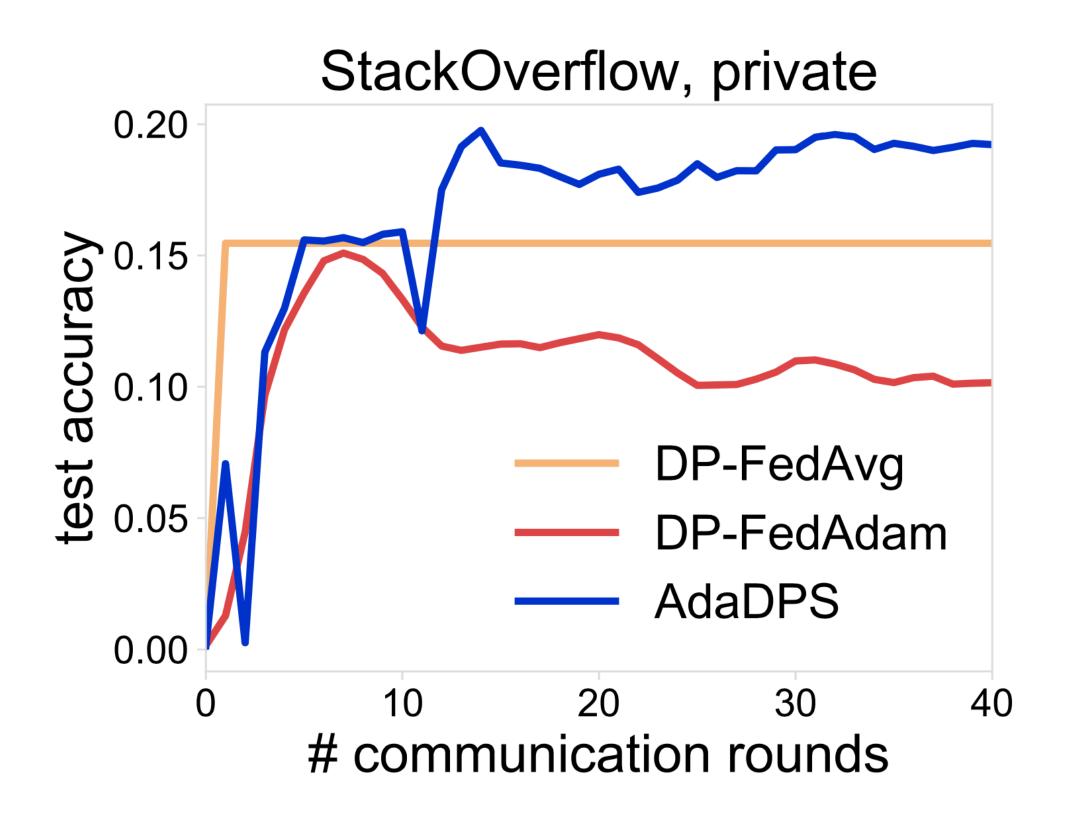


centralized training



centralized training





centralized training

federated learning

Future Works

Future Works

- Exploring other approaches of reducing noise (e.g., with tree aggregation)
- Generalizing our approach without public data to arbitrary neural networks

Future Works

- Exploring other approaches of reducing noise (e.g., with tree aggregation)
- Generalizing our approach without public data to arbitrary neural networks

Full paper: https://arxiv.org/abs/2202.05963

Code: github.com/litian96/AdaDPS