

Karl Bäckström Marina Papatriantafilou Philippas Tsigas

Background

Focus: Asynchronous parallel SGD (AsyncSGD)

- SGD is a sequential iterative numerical optimization algorithm
- Effective non-convex problems (read: deep learning)
- Recently, asynchronous parallelization has gained traction
- Asynchrony gives leads to (i) computational efficiency (ii) asynchrony-induced noise

Background

Background

4

 $\exists \text{ staleness} \\ \Rightarrow \\ \text{overshooting} \\ \approx \\ asynchrony-induced \\ noise \\ \end{vmatrix}$

Background

Static dampening

Pre-defined heuristic rule for dampening based on staleness

Static dampening

 $\eta(\tau) = \eta_0 / \tau$ $\eta(\tau) = \eta_0 \cdot e^{-\beta\tau}$ Constant (standard)

$$\eta(\tau) = \eta_0$$

Underlying factors:	
UMA/NUMA	Algorithmic implementation
Synchronizatio mechanism	N.o. workers

Changes overall step size magnitude

Step size vanishes for high parallelism

Contributions

The ASAP.SGD theoretical framework for staleness-adaptiveness, that ensures:

Overall step size magnitude is preserved
(i) Step size sensitive applications (such as DL)
(ii) Comparability between methods

Within ASAP.SGD, we introduce the TAIL-au instance-based staleness-adaptive step size

 \succ Utilizes the overall staleness distribution ${\rm PDF}(\tau)$ to dynamically compute a tailored staleness adaptive step size function

7

Datasets: CIFAR, MNIST, Fashion-MNIST

Architectures: LeNet, 3-layer MLP

ASYNC TAIL

AsyncSGD algorithms: Lock-based AsyncSGD, Hogwild, Leashed-SGD

HOG TAIL

LSH TAIL

- ASYNC

HOG

_

LSH

ASAP.SGD: Instance-based Adaptiveness to Staleness in Asynchronous SGD

Evaluation

Conclusion

ASAP.SGD

- Framework that guides design of new staleness-adaptiveness step size functions
- \succ Formulates desirable analytical properties on $\eta(au)$
- > Establish convergence results on convex, non-convex, and Polyak-Lojasiewicz target functions

- > Instance-based (execution-tailored), staleness-adaptive step size function
- > Implicitly considers underlying system properties through $PDF(\tau)$
- > Outperforms non-adaptive, and previously proposed dampening schemes

Distributed Computing and Systems Chalmers University of Technology

CHALMERS

Karl Bäckström

bakarl@chalmers.se