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THE BLUE BUS / RED BUS PARADOX (1/2)

Choosing a mean of transportation
Alternatives:

• a car, which takes on average 15 mins (vcar = −15)
• a bus, which takes on average 20 mins (vbus = −20)

Logit choice [1, 2]

• P(car) = exp(vcar)
exp(vcar)+exp(vbus) ≈ 0.62 most probable choice

• P(bus) = exp(vbus)
exp(vcar)+exp(vbus) ≈ 0.38
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THE BLUE BUS / RED BUS PARADOX (2/2)

Choosing a mean of transportation
Alternatives:

• a car, which takes on average 15 mins (vcar = −15)
• a blue bus, which takes on average 20 mins (vbus = −20)
• a red bus, identical to the blue bus (except its color)

Logit choice [1, 2]

• P(car) = exp(vcar)
exp(vcar)+2 exp(vbus) = 0.45 no longer most probable!

• P(blue bus) = P(red bus) = exp(vbus)
exp(vcar)+2 exp(vbus) = 0.27

Problem
Logit choice no longer reasonable: an irrelevant alternative
switches choice odds!
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ADVERSARIAL BANDITS (1/2)

Notations and incurred regret of EXP3
• (va,t)a∈A payoff vector of stage t = 1, 2, . . . T
• Pt(a) probability of choosing arm a at stage t (n arms)
• rt = vat,t reward received at stage t from arm at ∼ Pt

Reg(T) ≤
√
2n log(n)T

Blue Bus / Red Bus situation
Two alternatives a1,a2 ∈ A generate consistently same reward:

can we avoid considering both alternatives in a bandit algorithm?

More general: A has an inherent structure?
If n very big but some alternatives have very similar rewards:

can we exploit this side information to design a more efficient
algorithm?
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ADVERSARIAL BANDITS (2/2)

Notations and incurred regret of EXP3
• (va,t)a∈A payoff vector of stage t = 1, 2, . . . T
• Pt(a) probability of choosing arm a at stage t (n arms)
• rt = vat,t reward received at stage t from arm at ∼ Pt

Reg(T) ≤
√
2n log(n)T

Nested Exponential Weights algorithm
If we exploit side-information on the structure of A and regularity
of (va)a∈A, we propose to use the Nested Exponential Weights
(NEW) algorithm to obtain

Reg(T) ≤
√
2neff log(n)T

where neff is typically much smaller than n and we always have
neff ≤ n.
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GENERAL SIMILARITY MODEL

Figure 1: Nested structure: (L = 3)

• A := {ai : i = 1, . . . ,n} set of
alternatives

• {A} =: S0 ≽ · · · ≽ SL := {{a} :
a ∈ A} tower of partitions

Reward & Feedback
For all a ∈ A and a ≡ SL ◁ SL−1 ◁ · · · ◁ S0 ≡ A its lineage,

va =
∑L

ℓ=1
rSℓ

Semi-bandit feedback: at each round, the learner observes each rSℓ

rSℓ ∈ [0,Rℓ] for all Sℓ ∈ Sℓ, ℓ = 1, . . . , L,

where Rℓ ≥ 0 represents the reward variability for Sℓ 5



NESTED EXPONENTIAL WEIGHTS

Algorithm
For each stage t = 1, 2, . . . , given yt ∈ RA (current score), ηt
(learning rate) and µℓ (uncertainty level parameter), the learner:

1. computes choice probability Pt from Nested Logit Choice (NLC)
PSℓ|Sℓ−1(y) and yt using upward pass on level scores ySℓ

PSℓ|Sℓ−1(y) =
exp(ySℓ/µℓ)

exp(ySℓ−1/µℓ)
(NLC)

2. selects action at ∈ A following downward pass in (NLC)

at ∼ Pt(ηtyt)

3. uses level rewards rS,t for each class S ∋ at and constructs a
Nested Importance Weighted Estimator (NIWE) v̂t of the payoff
vector of stage t

4. updates their score: yt+1 ← yt + v̂t and the process repeats 6



REGRET GUARANTEES FOR NEW

Theorem
Defining √neff =

∑L
ℓ=1
√nℓRℓ, if NEW is run with ηt =

√
log n/(2t),

we have
E[Regp(T)] ≤ 2

√
2neff log n · T.

Comparison to EXP3
Regret guarantees of NEW and EXP3 differ by a factor of

α =
√
n/neff,

Suppose red bus / blue bus problem with

• n1 = 2 classes and n2 = 100 alternatives per class
• negligible intra-class reward differential (R2 ≈ 0)

regret guarantees improves by a factor of α ≈ 10
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BENEFITS IN THE RED BUS / BLUE BUS PROBLEM
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Figure 2: Regret of EXP3 and NEW in the red bus / blue bus problem with
different numbers of buses N.

Interpretation
NEW systematically achieves better regret than EXP3 and is far less
sensible to N

8



CONCLUSION

The Nested Exponential Weights (NEW) algorithm combines:

• the Nested Logit Choice (NLC) rule
• the Nested Importance Weighted Estimator (NIWE)

resulting in an improved adversarial bandit algorithm exploiting
side-information on the structure of A and regularity of (va)a∈A
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Thank you!
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