ONLINE LEARNING FOR PANDORA'S BOX AND MIN SUM SET COVER

Evangelia Gergatsouli, Christos Tzamos University of Wisconsin-Madison

ICML, July 2022

Evangelia Gergatsouli, Christos Tzamos

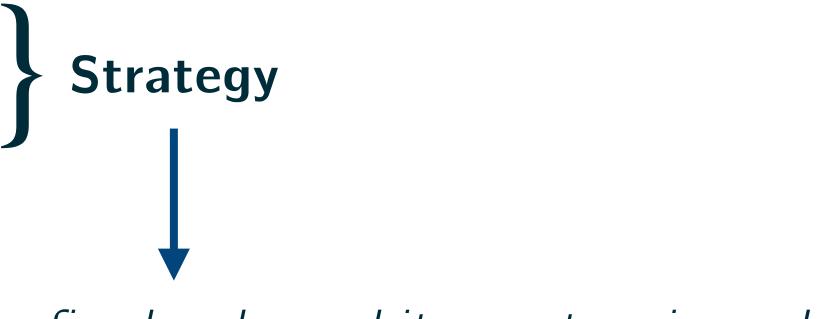
Find the best alternative!

▶Information is not free Explore alternatives (open boxes)
Stop anytime and take best so far

Partially adaptive: fixed order, arbitrary stopping rule

Evangelia Gergatsouli, Christos Tzamos

Find the best alternative!



42min

??

▶Information is not free Explore alternatives (open boxes)
Stop anytime and take best so far

Partially adaptive: fixed order, arbitrary stopping rule

Evangelia Gergatsouli, Christos Tzamos

Find the best alternative!

50min

35min

??

Opening cost: 3 Final option: Route 4 **Total cost**: **32**+3

42min

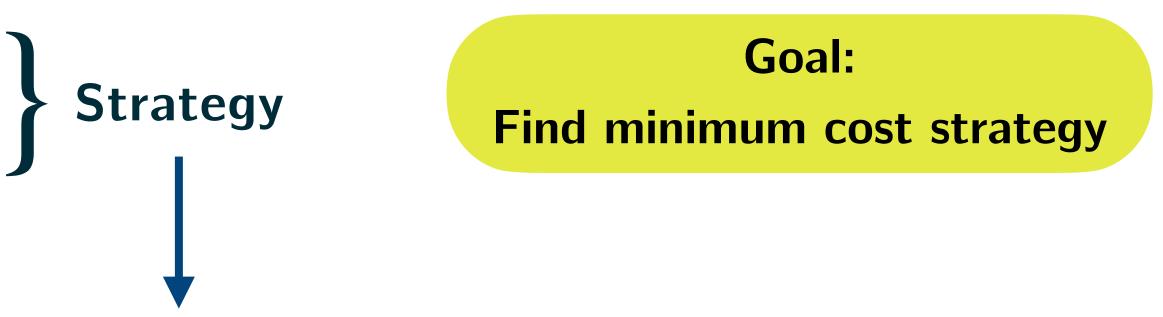
??

▶Information is not free Explore alternatives (open boxes)
Stop anytime and take best so far

Partially adaptive: fixed order, arbitrary stopping rule

Evangelia Gergatsouli, Christos Tzamos

Find the best alternative!

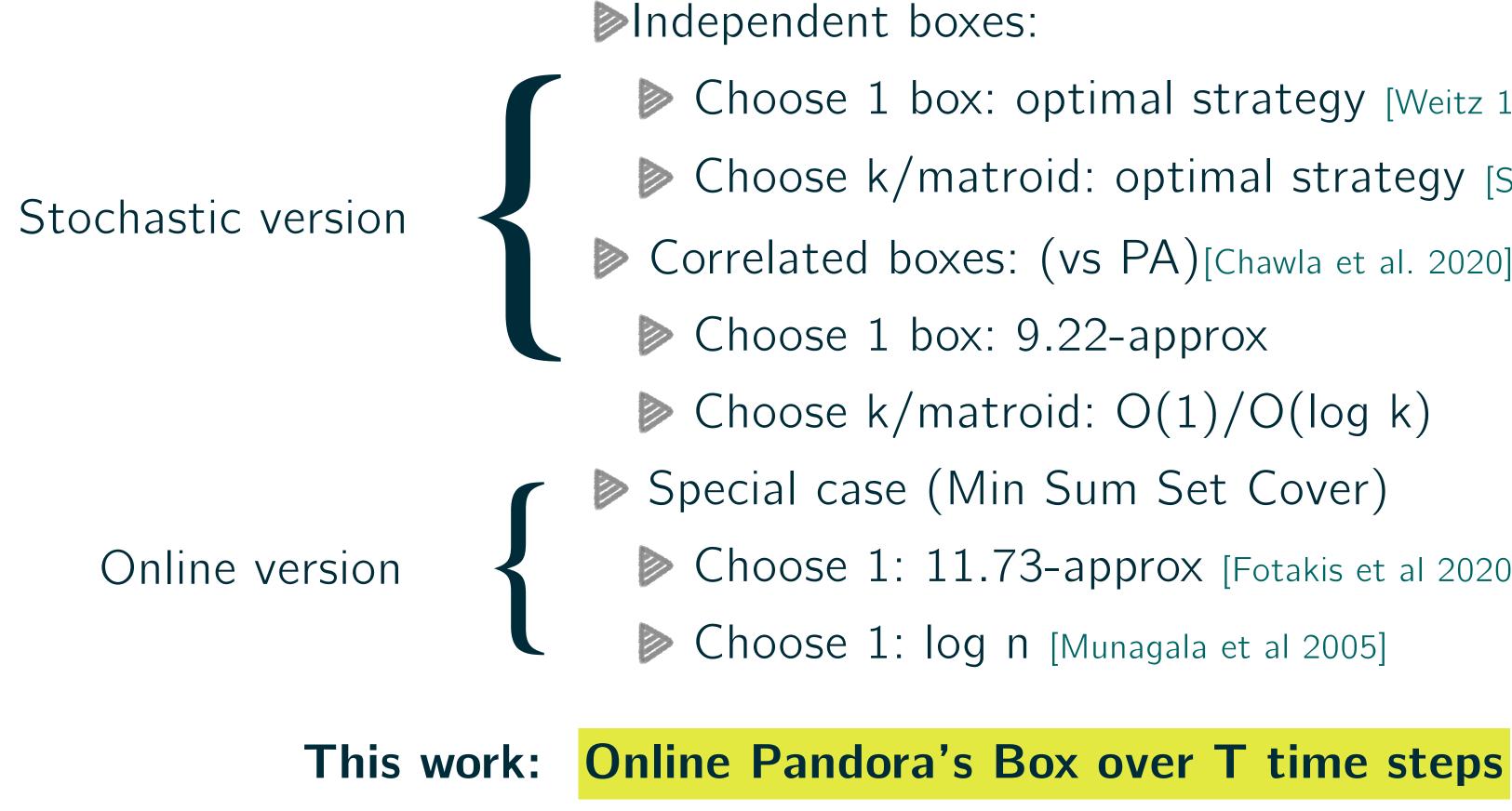


PREVIOUS WORK



- Choose 1 box: optimal strategy [Weitz 1979]
- Choose k/matroid: optimal strategy [Singla 2018]
- Correlated boxes: (vs PA)[Chawla et al. 2020]
 - Choose 1 box: 9.22-approx
 - Choose k/matroid: $O(1)/O(\log k)$
- Special case (Min Sum Set Cover)
 - Choose 1: 11.73-approx [Fotakis et al 2020]
 - Choose 1: log n [Munagala et al 2005]

PREVIOUS WORK



Evangelia Gergatsouli, Christos Tzamos

- Choose 1 box: optimal strategy [Weitz 1979]
- Choose k/matroid: optimal strategy [Singla 2018]
- Correlated boxes: (vs PA)[Chawla et al. 2020]
 - Choose 1 box: 9.22-approx
 - Choose k/matroid: O(1)/O(log k)
- Special case (Min Sum Set Cover)
 - Choose 1: 11.73-approx [Fotakis et al 2020]
 - Choose 1: log n [Munagala et al 2005]

Match results in online version

Improve results **Simpler algorithm**

AN ONLINE SEARCH PROBLEM

Online Pandora's Box over T time steps?



Evangelia Gergatsouli, Christos Tzamos

For each day *t*:

- 1. New realization of values in boxes
- 2. Pick a strategy \mathscr{A}^t
- 3. Play x_t according to \mathscr{A}^t
- 4. Receive loss $f^{t}(x_{t})$
- 5. See loss function f^t on all x's

Goal:

Obtain α -approximate no regret algorithm vs hindsight optimal

AN ONLINE SEARCH PROBLEM

Online Pandora's Box over T time steps?



Evangelia Gergatsouli, Christos Tzamos

For each day *t*:

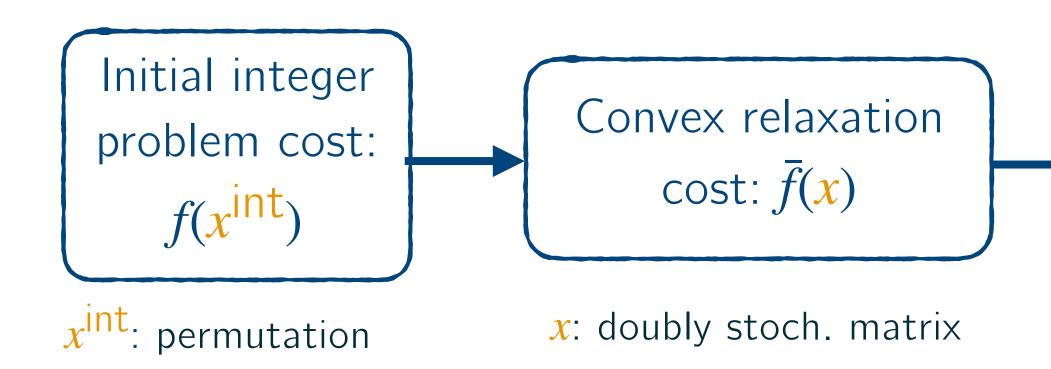
- 1. New realization of values in boxes
- 2. Pick a strategy \mathscr{A}^t
- 3. Play x_t according to \mathscr{A}^t
- 4. Receive loss $f^{t}(x_{t})$
- 5. See loss function f^t on all x's

Goal:

Obtain α -approximate no regret algorithm vs hindsight optimal

$$\left\{\frac{1}{T}\sum_{t\in[T]}\mathscr{A}(t)-\alpha\mathsf{OPT}(t)\right\}\to 0$$

OUR FRAMEWORK (1/2)



Main algorithm:

For each round $t \in [T]$ do

Set
$$x_t = OCO(f^1, ..., f^{t-1})$$

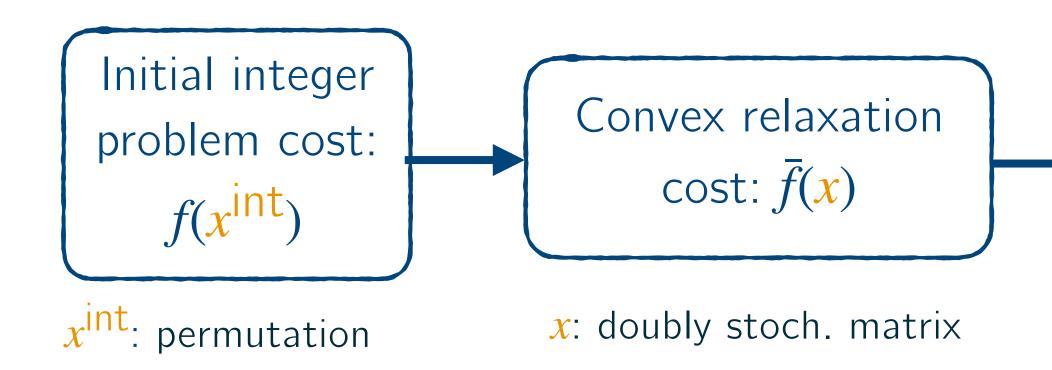
Round x_t to x_t^{int} according to algorithm \mathscr{A}

Receive loss
$$f^t(x_t^{int})$$

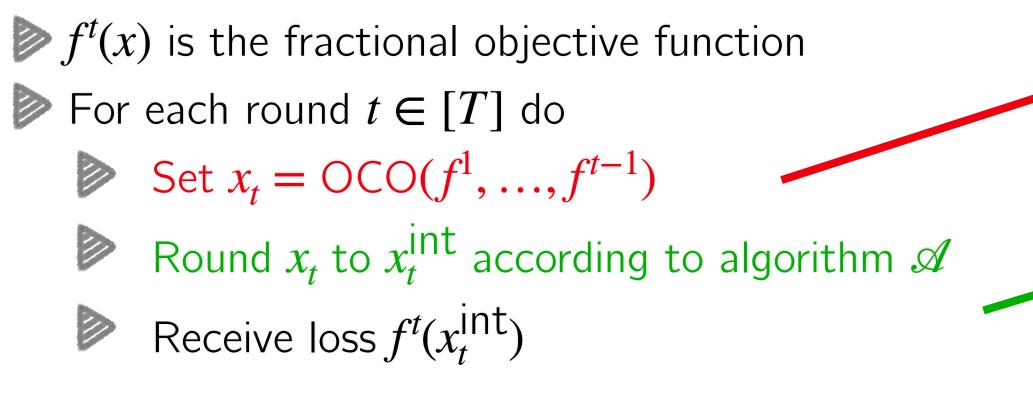
Choose fractional solution using Online Convex Optimization algorithm

Rounding algorithm *A* to integer solution

OUR FRAMEWORK (1/2)

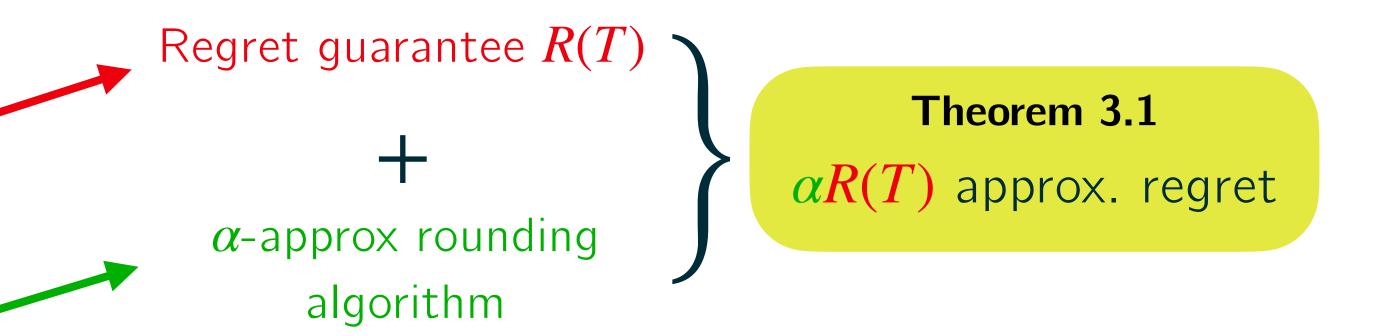


Main algorithm:

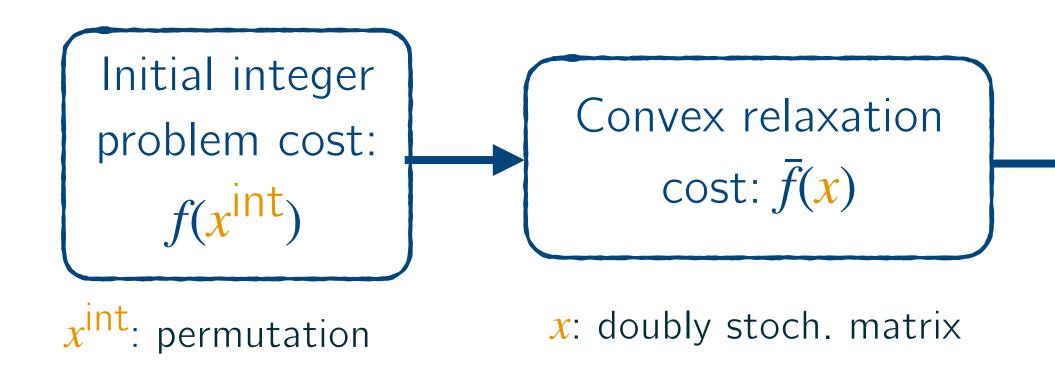


Choose fractional solution using Online Convex Optimization algorithm

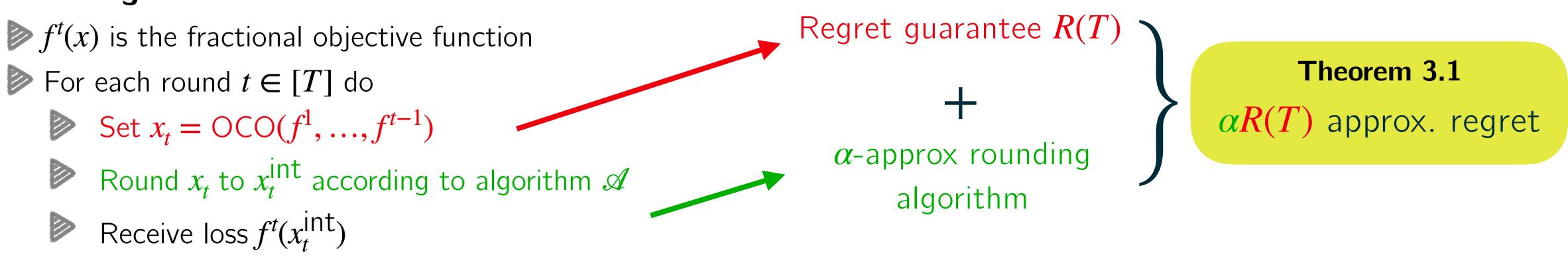
Rounding algorithm \mathscr{A} to integer solution

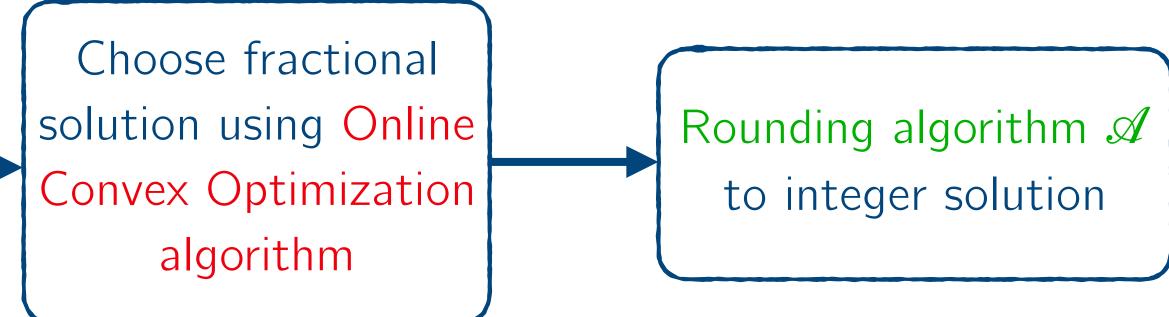


OUR FRAMEWORK (1/2)



Main algorithm:





Optimize the two components independently!

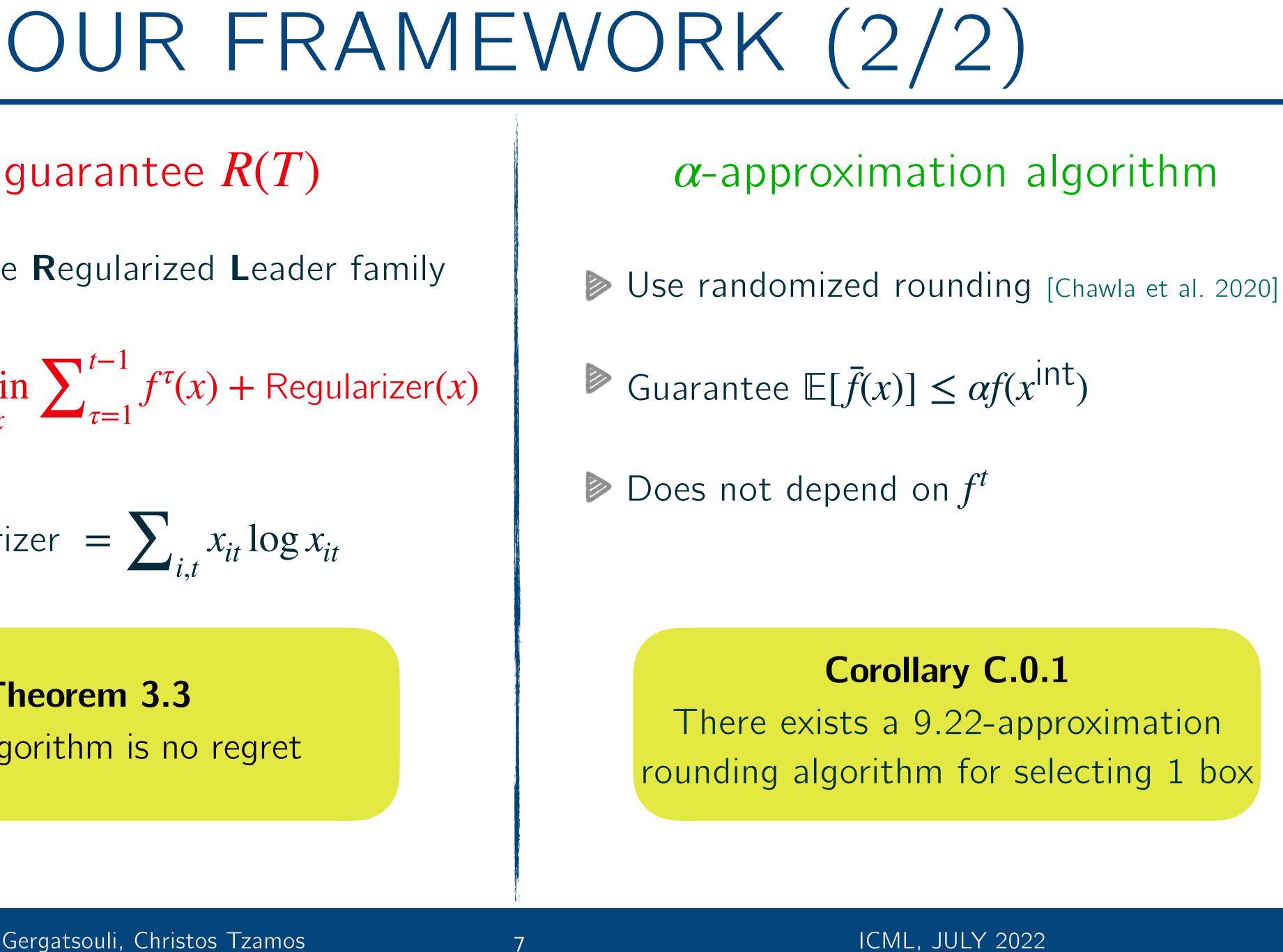
Regret guarantee R(T)

Use Follow The Regularized Leader family

Set
$$OCO = \min_{x} \sum_{\tau=1}^{t-1} f^{\tau}(x) + \text{Regularizer}(x)$$

Choose regularizer =
$$\sum_{i,t} x_{it} \log x_{it}$$

Theorem 3.3 OCO Algorithm is no regret



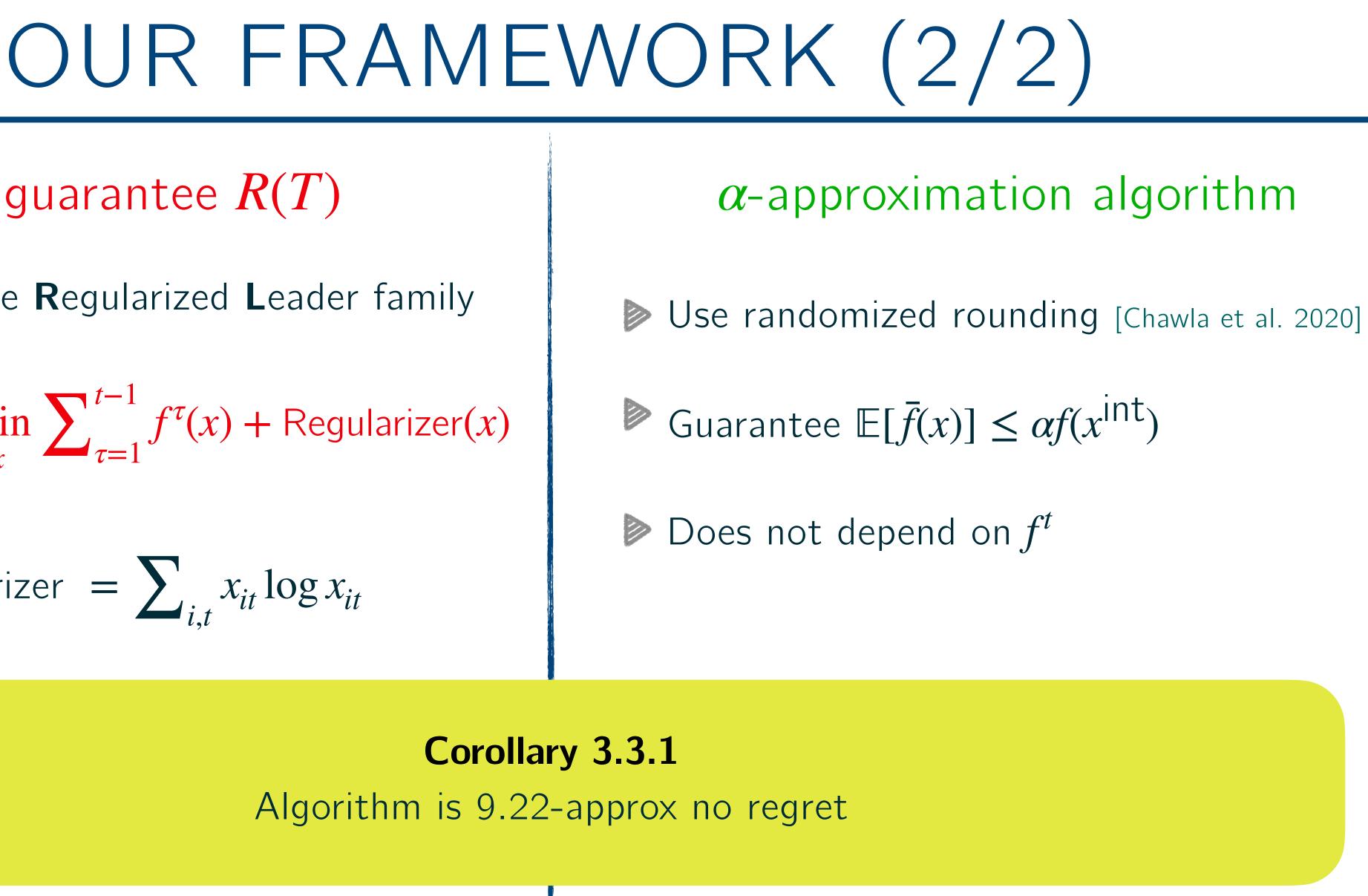
Regret guarantee R(T)

Use Follow The Regularized Leader family

Set
$$OCO = \min_{x} \sum_{\tau=1}^{t-1} f^{\tau}(x) + \text{Regularizer}(x)$$

Choose regularizer = $\sum_{i,t} x_{it} \log x_{it}$

Evangelia Gergatsouli, Christos Tzamos



RESULTS AND EXTENSIONS

More involved constraints:

Choose 1 box

- Choose k boxes
- Choose a matroid basis of size k

	1 box	k boxes	Matroid basis, size k
α-approx. Regret	$\alpha = 9.22$	$\alpha = O(1)$	$\alpha = O(\log k)$

RESULTS AND EXTENSIONS

More involved constraints:

Choose 1 box

- Choose k boxes
- Choose a matroid basis of size k

1. New realization of values in boxes

2. Pick a strategy \mathscr{A}^t

For each day *t*:

- 3. Play x_t according to \mathscr{A}^t
 - 4. Receive loss $f^{t}(x_{t})$
 - 5. See loss function f^t on all x's

	1 box	k boxes	Matroid basis, size k
α-approx. Regret	$\alpha = 9.22$	$\alpha = O(1)$	$\alpha = O(\log k)$

What if not full information?

- 1. New realization of values in boxes 2. Pick a strategy \mathscr{A}^t
- 3. Play x_t according to \mathscr{A}^t
- 4. Receive loss $f^t(x_t)$

5. See loss function on all x_t

Full information setting

Evangelia Gergatsouli, Christos Tzamos

BANDIT SETTING

Bandit setting

Same results for full info & bandit !

Evangelia Gergatsouli, Christos Tzamos

RESULTS

How? Balance explore/FTRL steps

Same results for full info & bandit !

How? Balance explore/FTRL steps

Main algorithm:

Split [T] into intervals \mathscr{I}_i , choose uniformly random $t_p \in [\mathscr{I}_i]$, $\mathscr{R} = \emptyset$

For each interval \mathscr{I}_i and each time $t \in \mathscr{I}_i$

If
$$t = t_p$$

 \triangleright Open all boxes, include t_p in \mathscr{R}

Set
$$x_t = \min_{x} \sum_{\tau \in \mathscr{R}} f^{\tau}(x) + \text{Regularizer}(x)$$

Round x_t to x_t^{int} according to algorithm \mathscr{A}

Same results for full info & bandit !

How? Balance explore/FTRL steps

Main algorithm:

Split [T] into intervals \mathscr{I}_i , choose uniformly random $t_p \in [\mathscr{I}_i]$, $\mathscr{R} = \emptyset$

For each interval \mathscr{I}_i and each time $t \in \mathscr{I}_i$

If
$$t = t_p$$

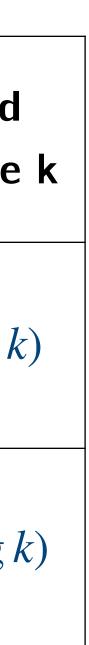
 \triangleright Open all boxes, include t_p in \mathscr{R}

Set
$$x_t = \min_{x} \sum_{\tau \in \mathscr{R}} f^{\tau}(x) + \text{Regularizer}(x)$$

Round x_t to x_t^{int} according to algorithm \mathscr{A}

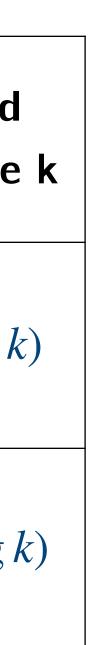
Theorem 4.1 In the bandit setting, OCO Algorithm is no regret

	1 box	k boxes	Matroid basis, size
α-approx. Regret	$\alpha = 9.22$	$\alpha = O(1)$	$\alpha = O(\log k)$
α-approx. Regret	$\alpha = 3.16$	$\alpha = 12.64$	$\alpha = O(\log \lambda)$



Full information & ban Against

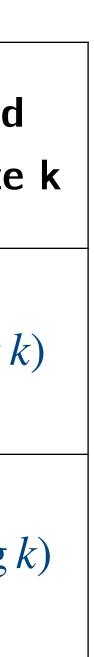
		1 box	k boxes	Matroid basis, size
ndit PA	α-approx. Regret	$\alpha = 9.22$	$\alpha = O(1)$	$\alpha = O(\log k)$
	α-approx. Regret	$\alpha = 3.16$	$\alpha = 12.64$	$\alpha = O(\log k)$



Full information & bar Against

Against

		1 box	k boxes	Matroid basis, size
ndit PA	α-approx. Regret	$\alpha = 9.22$	$\alpha = O(1)$	$\alpha = O(\log k)$
NA	α-approx. Regret	$\alpha = 3.16$	$\alpha = 12.64$	$\alpha = O(\log \lambda)$

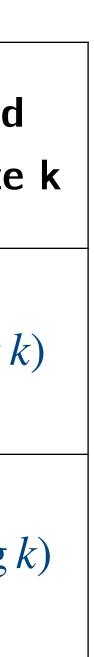


Full information & bar Against

Against

Different ellipsoidbased algorithm

		1 box	k boxes	Matroid basis, size
ndit PA	α-approx. Regret	$\alpha = 9.22$	$\alpha = O(1)$	$\alpha = O(\log k)$
NA	α-approx. Regret	$\alpha = 3.16$	$\alpha = 12.64$	$\alpha = O(\log \lambda)$



Full information & bar Against

Against

Different ellipsoidbased algorithm

Thank you!

Evangelia Gergatsouli, Christos Tzamos

		1 box	k boxes	Matroid basis, size
ndit PA	α-approx. Regret	$\alpha = 9.22$	$\alpha = O(1)$	$\alpha = O(\log k)$
NA	α-approx. Regret	$\alpha = 3.16$	$\alpha = 12.64$	$\alpha = O(\log \lambda)$

