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Regression under covariate shift

our work focuses on regression under covariate shift
observational model
we observe a dataset {(X;, Y;)}L;, where

Yi=f*X)+&, i=1,..,n,

where f* = E[Y | X =]

covariate distribution
covariates are sampled from source distribution P and target distribution Q:
iid.
p ~ P, (n=mnp+ngp)

- iid.
target covarlates: Xopt1s = ,an+nQ <,

source covariates: X1, e Xy



Similarity measure

we define a measure between two distributions P, Q on metric space (£, d)

similarity measure
for radius i > 0, we define

pu(P, Q) = dQ(x) =

f P(B( P(B(x, 1)) [m]

above, B(x, h) is closed ball of radius & centered at x
> atfixed h > 0, absolute continuity is not required for finite similarity measure

> measure generalizes existing notions of “similarity” for pair (P, Q)
> our results use scaling of mapping i — py,(P, Q) in limith — 0*



Bounds on similarity measure

we bound the similarity measure using covering numbers

Z

covering number N(h) := minimal number of balls of radius / required to cover 2



Bounds on similarity measure
can bound similarity measure by approximating the integral over minimal covers

Proposition
Suppose that for some h > O thereis A > 0 such that the mass comparison condition

AP(B(x, ) = Q(B(x, h))
holds for allx € 2. Then, the similarity measure satisfies

pu(P, Q) < AN(h/2).

(note A can depend on & in claim above)



Consequences of general bound

using previous claim, can bound similarity measure in some situations

examples
» bounded likelihood ratio: if Q < P and %(x) < bforall x, have p,(P,Q) <bN (g)

> transfer exponent (Kptoufe & Martinet, 2018;2021):
- pair (P, Q) has (y, C, )-transfer exponent if

P(B(x, 1)) = C,WQ(B(x,l)) forallxe Z, allh>0.  (y,C,)€R, x(0,1]

- implies similarity measure bound, p,(P, Q) < (hVCy)‘1 N(h/2),

(note that N(h) < h™* as h — 0* for compact domains 2 C R¥)



Assumptions on regression setup

recall our regression setup,
Yi=f*(X)+ &, fori=1,..,n

smoothness condition
assume 2 = [0,1] and assume that f* is L-Lipschitz,

f*eF(L):= {f: [0,1]] = R | |f(x)—f(x’)| < Llx—x'|foranyx,x’ € [0,1]}

noise condition
assume the noise variables satisfy (almost surely)

E[&|X]|<0?  fori=1,..,n



Classes of covariate shifts

below are families of covariate shift instances based on the map h — py,(P, Q)

families of covariate shifts
> we consider pairs (P, Q) for which (roughly) p,(P, Q) S h™*ash — 0*:

D, C) = {(P, Q| sup hpy (P, Q) < c} (@>1andC > 1)

» note that Z(a,C) c Z(«/,C’")ifa’ <aandC < C’

(some additional discussion and extensions in our full paper)



Main result: minimax upper and lower bounds

our minimax results are stated for excess prediction error under Q,

Pl = Br-o| (FO) - r000)' ]

Theorem
Supposec > L. Letnp V ng 2 1, >1,C > 1. Forany (P, Q) € Z(a, C), we have

3 2
. P Np\5 n 3
sup _inf sup Elf - flfzq = {(O_Izj)m +(_Q)}

(PQEZ(@C) f fre7 (L) o?
> with no access to samples under Q, the worst case is 122+ > =23 whena > 1
> upper bound is achieved by analyzing Nadaraya-Watson estimator under covariate shift

> lower bound is achieved by pair (P, ¢, Q, c) € Z(a, C) that we construct



Achievable result

achievable result based on classical Nadaraya-Watson estimator

Nadaraya-Watson (NW) estimator
defined pointwise by the local average,

Y, YiUX; € B(x, hy))

f): 71X € B(x, h,))

(above, i1, > 0is a bandwidth parameter)

> the estimator is defined to be zero when denominator is zero

> we establish minimax upper bounds by selecting h,, as a function of (np, ng, 0%,L,a,C)



Lower bound instance
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Illustration of lower bound instance

high-level overview

» we construct a hard pair (P, Q) € Z(a,C)

» we construct a hard family of regression functions

within .7 (L)

> we establish our minimax lower bound by

combining these two pieces with Fano’s inequality

and packing-based arguments
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Comparison to transfer exponent
introduced by Kptoufe and Martinet, 2018; 2021

For some instances, .
transfer exponent Hardest instances

is loose coincide our results have consequences for previously

proposed notion of transfer exponent

> (P,Q)have (y, C,)-transfer exponent when for
allx, h
P(B(x, h)) = C,h"Q(B(x, h))

(y,C,)-transfer exponent

> can show if (P, Q) have (y, C, )-transfer
exponent, then (P, Q) € Z(a, C)

> consequently, can obtain upper bounds for
instances with known transfer exponent
D(y+1,2/C))
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Conclusions

summary

> we introduce a similarity measure between two probability measures on the same space
> we show that this measure can be bounded easily under natural conditions

> we derive matching minimax upper and lower bounds for nonparametric regression
under classes of covariate shifts that are parameterized by the scaling of this measure

additional results (not discussed)

> bounds under more general Holder-smoothness conditions and additional classes of
covariate shifts

> consequences of Achievability results for bounded likelihood ratio and transfer exponent
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