Minimum Cost Intervention Design for Causal Effect Identification

Jalal Etesami,
Sina Akbari, Negar Kiyavash

ICML 2022

Intervene on Smoking:

$$
P(\text { Death } \mid \text { do(Smoking }))
$$

do(Smoking=1): Force to smoke do(Smoking=0): Force to stop smoking

- Causal graph \mathcal{G} :

- Causal graph \mathcal{G} :

Identifiability
$-\mathcal{G}$ and $P(V)$ are given.

- Goal: uniquely compute a causal query $P(S \mid d o(T))$.
- Causal graph \mathcal{G} :

Identifiability

- \mathcal{G} and $P(V)$ are given.
- Goal: uniquely compute a causal query $P(S \mid d o(T))$.

General identifiability

- \mathcal{G} and a set of distributions $\left\{P\left(Y_{1} \mid d o\left(A_{1}\right)\right), \ldots, P\left(Y_{k} \mid d o\left(A_{k}\right)\right)\right\}$ are given.
- Goal: uniquely compute a causal query $P(S \mid d o(T))$.

What is known? ${ }^{1,2}$

- Let $Y_{i}:=V \backslash A_{i}, \forall i$.
- \mathcal{G} and a set of intervention sets A_{1}, \ldots, A_{k} are given.
- Whether a causal query $P(S \mid d o(T))$ is identifiable from

$$
\mathbf{P}:=\left\{P\left(Y_{1} \mid d o\left(A_{1}\right)\right), \ldots, P\left(Y_{k} \mid d o\left(A_{k}\right)\right)\right\}
$$

[^0]What is known? ${ }^{1,2}$

- Let $Y_{i}:=V \backslash A_{i}, \forall i$.
- \mathcal{G} and a set of intervention sets A_{1}, \ldots, A_{k} are given.
- Whether a causal query $P(S \mid d o(T))$ is identifiable from

$$
\mathbf{P}:=\left\{P\left(Y_{1} \mid \operatorname{do}\left(A_{1}\right)\right), \ldots, P\left(Y_{k} \mid \operatorname{do}\left(A_{k}\right)\right)\right\} .
$$

The intervention design problem

- Having \mathbf{P} is costly.
- What is the set \mathbf{P} with minimum cost that identifies $P(S \mid d o(T))$?

[^1]
Minimum cost intervention design problem

- Causal graph \mathcal{G} is known.
- Two disjoint subsets $S, T \subseteq V$ are given.

Minimum cost intervention design problem

- Causal graph \mathcal{G} is known.
- Two disjoint subsets $S, T \subseteq V$ are given.
- Goal: Find a collection $\mathbf{A}^{*}=\left\{A_{1}, \ldots, A_{m}\right\}$ of subsets of V s.t.
- cost of \mathbf{A}^{*} is minimum,
- $P(S \mid d o(T))$ is identifiable form

$$
\left\{P\left(V \backslash A_{1} \mid \operatorname{do}\left(A_{1}\right)\right), \ldots, P\left(V \backslash A_{m} \mid \operatorname{do}\left(A_{m}\right)\right)\right\}
$$

Minimum cost intervention design problem

- Causal graph \mathcal{G} is known.
- Two disjoint subsets $S, T \subseteq V$ are given.
- Goal: Find a collection $\mathbf{A}^{*}=\left\{A_{1}, \ldots, A_{m}\right\}$ of subsets of V s.t.
- cost of \mathbf{A}^{*} is minimum,
- $P(S \mid d o(T))$ is identifiable form

$$
\left\{P\left(V \backslash A_{1} \mid \operatorname{do}\left(A_{1}\right)\right), \ldots, P\left(V \backslash A_{m} \mid \operatorname{do}\left(A_{m}\right)\right)\right\}
$$

Assumption
Cost function is additive, i.e., $\mathbf{C}(\cdot): V \rightarrow \mathbb{R}^{\geq 0}$, and

$$
\mathbf{C}\left(A_{i}\right)=\sum_{a \in A_{i}} \mathbf{C}(a) .
$$

Definition: Let $\mathbf{I D}_{\mathcal{G}}(S, T)$ denote the set of all collections of subsets of V, e.g., $\mathbf{A}=\left\{A_{1}, \ldots, A_{m}\right\}$, where $A_{i} \subseteq V$, s.t.

- $P(S \mid d o(T))$ is identifiable in \mathcal{G} from

$$
\left\{P\left(V \backslash A_{1} \mid d o\left(A_{1}\right)\right), \ldots, P\left(V \backslash A_{m} \mid d o\left(A_{m}\right)\right)\right\}
$$

Note: $\left|\mathbf{I D}_{\mathcal{G}}(S, T)\right| \leq 2^{2^{|V|}}$.

Definition: Let $\mathbf{I D}_{\mathcal{G}}(S, T)$ denote the set of all collections of subsets of V, e.g., $\mathbf{A}=\left\{A_{1}, \ldots, A_{m}\right\}$, where $A_{i} \subseteq V$, s.t.

- $P(S \mid d o(T))$ is identifiable in \mathcal{G} from

$$
\left\{P\left(V \backslash A_{1} \mid d o\left(A_{1}\right)\right), \ldots, P\left(V \backslash A_{m} \mid d o\left(A_{m}\right)\right)\right\}
$$

Note: $\left|\mathbf{I D}_{\mathcal{G}}(S, T)\right| \leq 2^{2^{|V|}}$.
Problem:

$$
\begin{equation*}
\mathbf{A}_{S, T}^{*} \in \arg \min _{\mathbf{A} \in \mathbf{I D}_{\mathcal{G}}(S, T)} \sum_{A \in \mathbf{A}} \mathbf{C}(A) \tag{1}
\end{equation*}
$$

Definition (C-component)
$\mathcal{G}_{[S]}$ is a c-component.

Theorem

- Let $\mathbf{A}=\left\{A_{1}, \ldots, A_{m}\right\}_{m>1}$ be a member of $\boldsymbol{I} \boldsymbol{D}_{\mathcal{G}}(S, T)$.
- Suppose S is a subset of variables s.t. $\mathcal{G}_{[S]}$ is a c-component. Then,

$$
\exists \tilde{A} \subseteq V \text { s.t. } \tilde{\mathbf{A}}=\{\tilde{A}\} \in \boldsymbol{I D}_{\mathcal{G}}(S, T) \text { and } \mathbf{C}(\tilde{\mathbf{A}}) \leq \mathbf{C}(\mathbf{A})
$$

Theorem

- Let $\mathbf{A}=\left\{A_{1}, \ldots, A_{m}\right\}_{m>1}$ be a member of $\boldsymbol{I} \boldsymbol{D}_{\mathcal{G}}(S, T)$.
- Suppose S is a subset of variables s.t. $\mathcal{G}_{[S]}$ is a c-component. Then,

$$
\exists \tilde{A} \subseteq V \text { s.t. } \tilde{\mathbf{A}}=\{\tilde{A}\} \in \boldsymbol{I D}_{\mathcal{G}}(S, T) \text { and } \mathbf{C}(\tilde{\mathbf{A}}) \leq \mathbf{C}(\mathbf{A})
$$

- More precisely, $\tilde{A}:=\bigcup_{i=1}^{m} A_{i} \backslash S$.

Theorem

- Let $\mathbf{A}=\left\{A_{1}, \ldots, A_{m}\right\}_{m>1}$ be a member of $\boldsymbol{I} \boldsymbol{D}_{\mathcal{G}}(S, T)$.
- Suppose S is a subset of variables s.t. $\mathcal{G}_{[S]}$ is a c-component.

Then,

$$
\exists \tilde{A} \subseteq V \text { s.t. } \tilde{\mathbf{A}}=\{\tilde{A}\} \in \boldsymbol{I} \boldsymbol{D}_{\mathcal{G}}(S, T) \text { and } \mathbf{C}(\tilde{\mathbf{A}}) \leq \mathbf{C}(\mathbf{A})
$$

- More precisely, $\tilde{A}:=\bigcup_{i=1}^{m} A_{i} \backslash S$.

Exponential Formulation

$$
\begin{equation*}
A_{S, T}^{*} \in \arg \min _{A \in \mathbf{I D}_{1}(S, T)} \sum_{a \in A} \mathbf{C}(a) \tag{2}
\end{equation*}
$$

Theorem

- Let $\mathbf{A}=\left\{A_{1}, \ldots, A_{m}\right\}_{m>1}$ be a member of $\boldsymbol{I} \boldsymbol{D}_{\mathcal{G}}(S, T)$.
- Suppose S is a subset of variables s.t. $\mathcal{G}_{[S]}$ is a c-component.

Then,

$$
\exists \tilde{A} \subseteq V \text { s.t. } \tilde{\mathbf{A}}=\{\tilde{A}\} \in \boldsymbol{I} \boldsymbol{D}_{\mathcal{G}}(S, T) \text { and } \mathbf{C}(\tilde{\mathbf{A}}) \leq \mathbf{C}(\mathbf{A})
$$

- More precisely, $\tilde{A}:=\bigcup_{i=1}^{m} A_{i} \backslash S$.

Exponential Formulation

$$
\begin{equation*}
A_{S, T}^{*} \in \arg \min _{A \in \mathbf{I D}_{1}(S, T)} \sum_{a \in A} \mathbf{C}(a) \tag{2}
\end{equation*}
$$

Note: $\left|\mathbf{I D}_{1}(S, T)\right| \leq 2^{|V|}$.

Theorem
There exists a polynomial-time reduction from the minimum vertex cover problem to the minimum cost intervention design problem.

Theorem
There exists a polynomial-time reduction from the minimum vertex cover problem to the minimum cost intervention design problem.

Theorem

There exists a polynomial-time reduction from the minimum vertex cover problem to the minimum cost intervention design problem.

Theorem

There exists a polynomial-time reduction from the minimum vertex cover problem to the minimum cost intervention design problem.

Corollary
Minimum cost intervention design problem is NP-hard.

Theorem

There exists a polynomial-time reduction from the minimum vertex cover problem to the minimum cost intervention design problem.

Corollary
Minimum cost intervention design problem is NP-hard.
Remark

- Let $\mathbf{C}(v)=1, \forall v \in V$.
- The problem is still NP-hard.

Definition: Let $Q[S]$ denotes the causal effect of $d o(V \backslash S)$ on S,

$$
Q[S]:=P(S \mid d o(V \backslash S))
$$

Definition: Let $Q[S]$ denotes the causal effect of $d o(V \backslash S)$ on S,

$$
Q[S]:=P(S \mid d o(V \backslash S))
$$

- $P(S \mid d o(T))$ is identifiable in \mathcal{G} iff $Q\left[\mathbf{A n c}_{\mathcal{G} \backslash T}(S)\right]$ is identifiable ${ }^{3}$.
- $\mathbf{A n c}_{\mathcal{G} \backslash T}(S)$ are ancestors of S in \mathcal{G} after deleting T.

Definition: Let $Q[S]$ denotes the causal effect of $d o(V \backslash S)$ on S,

$$
Q[S]:=P(S \mid d o(V \backslash S))
$$

- $P(S \mid d o(T))$ is identifiable in \mathcal{G} iff $Q\left[\mathbf{A n c}_{\mathcal{G} \backslash T}(S)\right]$ is identifiable ${ }^{3}$.
- $\mathbf{A n c}_{\mathcal{G} \backslash T}(S)$ are ancestors of S in \mathcal{G} after deleting T.

Original problem:

$$
A_{S, T}^{*} \in \arg \min _{A \in \mathbf{I D}_{1}(S, T)} \sum_{a \in A} \mathbf{C}(a)
$$

Definition: Let $Q[S]$ denotes the causal effect of $d o(V \backslash S)$ on S,

$$
Q[S]:=P(S \mid d o(V \backslash S))
$$

- $P(S \mid d o(T))$ is identifiable in \mathcal{G} iff $Q\left[\mathbf{A n c}_{\mathcal{G} \backslash T}(S)\right]$ is identifiable ${ }^{3}$.
- $\mathbf{A n c}_{\mathcal{G} \backslash T}(S)$ are ancestors of S in \mathcal{G} after deleting T.

Original problem:

$$
A_{S, T}^{*} \in \arg \min _{A \in \mathbf{I D}_{1}(S, T)} \sum_{a \in A} \mathbf{C}(a)
$$

Simplified problem: We can assume $T=V \backslash S$.

$$
A_{S}^{*} \in \arg \min _{A \in \mathbf{I} \mathbf{D}_{1}(S, V \backslash S)} \sum_{a \in A} \mathbf{C}(a)
$$

$$
\begin{aligned}
& \arg \min _{\mathbf{A} \in \mathbf{I \mathbf { D } _ { \mathcal { G } } (S , T)}} \sum_{A \in \mathbf{A}} \mathbf{C}(A) \\
& \arg \min _{A \in \mathbf{I D} \mathbf{D}_{1}(S, T)} \sum_{a \in A} \mathbf{C}(a) \\
& \arg \min _{A \in \mathbf{I D}_{1}(S, V \backslash S)} \sum_{a \in A} \mathbf{C}(a) .
\end{aligned}
$$

Definition (Hedge)

- Let S be a subset of V s.t. $\mathcal{G}_{[S]}$ is a c-component in \mathcal{G}. Subset
$F \subseteq V$ forms a hedge for $Q[S]$ if
- $S \subsetneq F$,
- F is the set of ancestors of S in $\mathcal{G}_{[F]}$,
- $\mathcal{G}_{[F]}$ is a c-component.

Definition

- Let S be a subset of V s.t. $\mathcal{G}_{[S]}$ is a c-component in \mathcal{G}. Subset
$F \subseteq V$ forms a hedge for $Q[S]$ if
- $S \subsetneq F$,
- F is the set of ancestors of S in $\mathcal{G}_{[F]}$,
- $\mathcal{G}_{[F]}$ is a c-component.

Definition

- Let S be a subset of V s.t. $\mathcal{G}_{[S]}$ is a c-component in \mathcal{G}. Subset
$F \subseteq V$ forms a hedge for $Q[S]$ if
- $S \subsetneq F$,
- F is the set of ancestors of S in $\mathcal{G}_{[F]}$,
- $\mathcal{G}_{[F]}$ is a c-component.

Fact

- Let S be a subset of V s.t. $\mathcal{G}_{[S]}$ is a c-component.
- Let $\left\{F_{1}, \ldots, F_{m}\right\}$ denotes the set of all hedges of $Q[S]$ in \mathcal{G}.

Definition

- Let S be a subset of V s.t. $\mathcal{G}_{[S]}$ is a c-component in \mathcal{G}. Subset
$F \subseteq V$ forms a hedge for $Q[S]$ if
- $S \subsetneq F$,
- F is the set of ancestors of S in $\mathcal{G}_{[F]}$,
- $\mathcal{G}_{[F]}$ is a c-component.

Fact

- Let S be a subset of V s.t. $\mathcal{G}_{[S]}$ is a c-component.
- Let $\left\{F_{1}, \ldots, F_{m}\right\}$ denotes the set of all hedges of $Q[S]$ in \mathcal{G}.
- Then, $A_{S} \in \boldsymbol{I D}_{1}(S, V \backslash S)$ iff

$$
A_{S} \cap\left(F_{i} \backslash S\right) \neq \emptyset, \forall i
$$

Definition

- Let S be a subset of V s.t. $\mathcal{G}_{[S]}$ is a c-component in \mathcal{G}. Subset
$F \subseteq V$ forms a hedge for $Q[S]$ if
- $S \subsetneq F$,
- F is the set of ancestors of S in $\mathcal{G}_{[F]}$,
- $\mathcal{G}_{[F]}$ is a c-component.

Fact

- Let S be a subset of V s.t. $\mathcal{G}_{[S]}$ is a c-component.
- Let $\left\{F_{1}, \ldots, F_{m}\right\}$ denotes the set of all hedges of $Q[S]$ in \mathcal{G}.

Definition

- Let S be a subset of V s.t. $\mathcal{G}_{[S]}$ is a c-component in \mathcal{G}. Subset
$F \subseteq V$ forms a hedge for $Q[S]$ if
- $S \subsetneq F$,
- F is the set of ancestors of S in $\mathcal{G}_{[F]}$,
- $\mathcal{G}_{[F]}$ is a c-component.

Fact

- Let S be a subset of V s.t. $\mathcal{G}_{[S]}$ is a c-component.
- Let $\left\{F_{1}, \ldots, F_{m}\right\}$ denotes the set of all hedges of $Q[S]$ in \mathcal{G}.
- Then A_{S}^{*} is a solution to the simplified problem iff it is a solution to the MWHS problem for the sets $\left\{F_{1} \backslash S, \ldots, F_{m} \backslash S\right\}$, with the weight function $\omega(\cdot):=\mathbf{C}(\cdot)$.
(I) Enumerate the hedges F_{i}, (II) Solve the MWHS problem.

```
Algorithm 1: Min-cost intervention( \(S, \mathcal{G}\) ).
    \(\mathbf{F} \leftarrow \emptyset, \quad H \leftarrow \operatorname{Hhull}\left(S, \mathcal{G}_{[V \backslash \mathbf{p a} \leftrightarrow(S)]}\right)\)
    if \(Q[S]\) is ID return \(\mathbf{p a} \leftrightarrow(S)\)
    while True do
            while True do
            \(a \leftarrow \arg \min _{a \in H \backslash S} \mathbf{C}(a)\)
            if \(Q[S]\) is ID in \(\mathcal{G}_{[H \backslash\{a\}]}\) then
            \(\mathbf{F} \leftarrow \mathbf{F} \cup\{H\}\)
                break
            else
                \(H \leftarrow \operatorname{Hhull}\left(S, \mathcal{G}_{[H \backslash\{a\}]}\right)\)
            \(A \leftarrow\) solve min hitting set for \(\{F \backslash S \mid F \in \mathbf{F}\}\)
            if \(A \cup \mathbf{p a} \leftrightarrow(S) \in \mathbf{I D}_{\mathbf{1}}(S)\) then
            return \(\left(A \cup \mathbf{p a}^{\leftrightarrow}(S)\right)\)
    \(H \leftarrow \operatorname{Hhull}\left(S, \mathcal{G}_{[V \backslash(A \cup \mathbf{p a} \leftrightarrow(S))]}\right)\)
```


Figure: Number of hedges formed for $Q[S]$.

- Heuristic algorithms: A few of them discussed in the paper.

- Heuristic algorithms: A few of them discussed in the paper.

- Structural side information:
- If \mathcal{G} is tree, polynomial algorithms exist.
- Heuristic algorithms: A few of them discussed in the paper.

- Structural side information:
- If \mathcal{G} is tree, polynomial algorithms exist.
- Additional side information:
- Under certain properties of the $\mathbf{C}(\cdot)$, the problem can be simplified.
- Heuristic algorithms: A few of them discussed in the paper.

- Structural side information:
- If \mathcal{G} is tree, polynomial algorithms exist.
- Additional side information:
- Under certain properties of the $\mathbf{C}(\cdot)$, the problem can be simplified.
- Future work: Approximation algorithms.

THANK YOU...

[^0]: ${ }^{1}$ Lee et. al., "General identifiability with arbitrary surrogate experiments," UAI 2020.
 ${ }^{2}$ Kivva et. al., "Revisiting the general identifiability problem," UAI 2022.

[^1]: ${ }^{1}$ Lee et. al., "General identifiability with arbitrary surrogate experiments," UAI 2020.
 ${ }^{2}$ Kivva et. al., "Revisiting the general identifiability problem," UAI 2022.

