Minimum Cost Intervention Design for Causal Effect Identification

> Jalal Etesami, Sina Akbari, Negar Kiyavash

> > ICML 2022

Intervene on Smoking:

P(Death|do(Smoking))

do(Smoking=1): Force to smoke do(Smoking=0): Force to stop smoking

Causal Effect Identification

- Causal graph $\mathcal{G}:$

Causal Effect Identification

- Causal graph \mathcal{G} :

Identifiability

- \mathcal{G} and P(V) are given.
- Goal: uniquely compute a causal query P(S|do(T)).

3

- Causal graph \mathcal{G} :

Identifiability

- \mathcal{G} and P(V) are given.
- Goal: uniquely compute a causal query P(S|do(T)).

General identifiability

- \mathcal{G} and a set of distributions $\{P(Y_1|do(A_1)), ..., P(Y_k|do(A_k))\}$ are given.
- Goal: uniquely compute a causal query P(S|do(T)).

5P5I

What is known?^{1,2}

- Let $Y_i := V \setminus A_i, \forall i$.
- \mathcal{G} and a set of intervention sets $A_1, ..., A_k$ are given.
- Whether a causal query P(S|do(T)) is identifiable from

 $\mathbf{P} := \{ P(Y_1 | do(A_1)), ..., P(Y_k | do(A_k)) \}.$

EPFL

¹Lee et. al., "General identifiability with arbitrary surrogate experiments," UAI 2020.
²Kivva et. al., "Revisiting the general identifiability problem," UAI 2022.

What is known?^{1,2}

- Let $Y_i := V \setminus A_i, \forall i$.
- \mathcal{G} and a set of intervention sets $A_1, ..., A_k$ are given.
- Whether a causal query P(S|do(T)) is identifiable from

$$\mathbf{P} := \{ P(Y_1 | do(A_1)), ..., P(Y_k | do(A_k)) \}.$$

The intervention design problem

- Having **P** is costly.
- What is the set **P** with minimum cost that identifies P(S|do(T))?

5P5I

¹Lee et. al., "General identifiability with arbitrary surrogate experiments," UAI 2020. ²Kivva et. al., "Revisiting the general identifiability problem," UAI 2022.

Minimum cost intervention design problem

- Causal graph ${\mathcal G}$ is known.
- Two disjoint subsets $S,T\subseteq V$ are given.

Minimum cost intervention design problem

- Causal graph \mathcal{G} is known.
- Two disjoint subsets $S,T\subseteq V$ are given.
- Goal: Find a collection $\mathbf{A}^* = \{A_1, ..., A_m\}$ of subsets of V s.t.
 - cost of \mathbf{A}^* is minimum,
 - P(S|do(T)) is identifiable form

 $\left\{P\left(V\setminus A_1|do(A_1)\right),...,P\left(V\setminus A_m|do(A_m)\right)\right\}.$

Minimum cost intervention design problem

- Causal graph \mathcal{G} is known.
- Two disjoint subsets $S,T\subseteq V$ are given.
- Goal: Find a collection $\mathbf{A}^* = \{A_1, ..., A_m\}$ of subsets of V s.t.
 - cost of \mathbf{A}^* is minimum,
 - P(S|do(T)) is identifiable form

$$\left\{P\left(V\setminus A_1|do(A_1)\right),...,P\left(V\setminus A_m|do(A_m)\right)\right\}.$$

Assumption

Cost function is additive, i.e., $\mathbf{C}(\cdot): V \to \mathbb{R}^{\geq 0}$, and

$$\mathbf{C}(A_i) = \sum_{a \in A_i} \mathbf{C}(a)$$

Definition: Let $\mathbf{ID}_{\mathcal{G}}(S,T)$ denote the set of all collections of subsets of V, e.g., $\mathbf{A} = \{A_1, ..., A_m\}$, where $A_i \subseteq V$, s.t.

- P(S|do(T)) is identifiable in \mathcal{G} from

 $\left\{P\left(V\setminus A_1|do(A_1)\right),...,P\left(V\setminus A_m|do(A_m)\right)\right\}.$

Note: $|\mathbf{ID}_{\mathcal{G}}(S,T)| \leq 2^{2^{|V|}}$.

Definition: Let $\mathbf{ID}_{\mathcal{G}}(S,T)$ denote the set of all collections of subsets of V, e.g., $\mathbf{A} = \{A_1, ..., A_m\}$, where $A_i \subseteq V$, s.t.

- P(S|do(T)) is identifiable in \mathcal{G} from

 $\left\{P\left(V\setminus A_1|do(A_1)\right),...,P\left(V\setminus A_m|do(A_m)\right)\right\}.$

Note: $|\mathbf{ID}_{\mathcal{G}}(S,T)| \le 2^{2^{|V|}}$.

Problem:

$$\mathbf{A}_{S,T}^* \in \arg\min_{\mathbf{A}\in\mathbf{ID}_{\mathcal{G}}(S,T)} \sum_{A\in\mathbf{A}} \mathbf{C}(A).$$
(1)

Definition (C-component) $\mathcal{G}_{[S]}$ is a c-component.

- Let $\mathbf{A} = \{A_1, ..., A_m\}_{m>1}$ be a member of $ID_{\mathcal{G}}(S, T)$.
- Suppose S is a subset of variables s.t. $\mathcal{G}_{[S]}$ is a c-component. Then,

 $\exists \tilde{A} \subseteq V \text{ s.t. } \tilde{\mathbf{A}} = \{\tilde{A}\} \in ID_{\mathcal{G}}(S,T) \text{ and } \mathbf{C}(\tilde{\mathbf{A}}) \leq \mathbf{C}(\mathbf{A}).$

- Let $\mathbf{A} = \{A_1, ..., A_m\}_{m>1}$ be a member of $ID_{\mathcal{G}}(S, T)$.
- Suppose S is a subset of variables s.t. $\mathcal{G}_{[S]}$ is a c-component. Then,

$$\exists \tilde{A} \subseteq V \text{ s.t. } \tilde{\mathbf{A}} = \{\tilde{A}\} \in ID_{\mathcal{G}}(S,T) \text{ and } \mathbf{C}(\tilde{\mathbf{A}}) \leq \mathbf{C}(\mathbf{A}).$$

- More precisely, $\tilde{A} := \bigcup_{i=1}^m A_i \setminus S$.

- Let $\mathbf{A} = \{A_1, ..., A_m\}_{m>1}$ be a member of $ID_{\mathcal{G}}(S, T)$.
- Suppose S is a subset of variables s.t. $\mathcal{G}_{[S]}$ is a c-component. Then,

$$\exists \tilde{A} \subseteq V \text{ s.t. } \tilde{\mathbf{A}} = \{\tilde{A}\} \in ID_{\mathcal{G}}(S,T) \text{ and } \mathbf{C}(\tilde{\mathbf{A}}) \leq \mathbf{C}(\mathbf{A}).$$

- More precisely, $\tilde{A} := \bigcup_{i=1}^m A_i \setminus S$.

Exponential Formulation

$$A_{S,T}^* \in \arg\min_{A \in \mathbf{ID}_1(S,T)} \sum_{a \in A} \mathbf{C}(a).$$
(2)

- Let $\mathbf{A} = \{A_1, ..., A_m\}_{m>1}$ be a member of $ID_{\mathcal{G}}(S, T)$.
- Suppose S is a subset of variables s.t. $\mathcal{G}_{[S]}$ is a c-component. Then,

$$\exists \tilde{A} \subseteq V \text{ s.t. } \tilde{\mathbf{A}} = \{\tilde{A}\} \in ID_{\mathcal{G}}(S,T) \text{ and } \mathbf{C}(\tilde{\mathbf{A}}) \leq \mathbf{C}(\mathbf{A}).$$

- More precisely, $\tilde{A} := \bigcup_{i=1}^m A_i \setminus S$.

Exponential Formulation

$$A_{S,T}^* \in \arg \min_{A \in \mathbf{ID}_1(S,T)} \sum_{a \in A} \mathbf{C}(a).$$
(2)

Note: $|\mathbf{ID}_1(S,T)| \le 2^{|V|}$.

Can we do better?

There exists a polynomial-time reduction from the minimum vertex cover problem to the minimum cost intervention design problem.

There exists a polynomial-time reduction from the minimum vertex cover problem to the minimum cost intervention design problem.

Figure: Minimum Vertex Cover (MVC)

There exists a polynomial-time reduction from the minimum vertex cover problem to the minimum cost intervention design problem.

There exists a polynomial-time reduction from the minimum vertex cover problem to the minimum cost intervention design problem.

Corollary

Minimum cost intervention design problem is NP-hard.

There exists a polynomial-time reduction from the minimum vertex cover problem to the minimum cost intervention design problem.

Corollary

Minimum cost intervention design problem is NP-hard.

Remark

- Let $\mathbf{C}(v) = 1, \forall v \in V.$
- The problem is still NP-hard.

Simplification

Definition: Let Q[S] denotes the causal effect of $do(V \setminus S)$ on S,

 $Q[S] := P(S|do(V \setminus S)).$

11

³Shpitser and Pearl 2006, Jaber et. al. 2019, Kivva et. al. 2022, etc.

Simplification

Definition: Let Q[S] denotes the causal effect of $do(V \setminus S)$ on S,

$$Q[S] := P(S|do(V \setminus S)).$$

- P(S|do(T)) is identifiable in \mathcal{G} iff $Q[\operatorname{Anc}_{\mathcal{G}\setminus T}(S)]$ is identifiable³.

- $\operatorname{Anc}_{\mathcal{G}\setminus T}(S)$ are ancestors of S in \mathcal{G} after deleting T.

³Shpitser and Pearl 2006, Jaber et. al. 2019, Kivva et. al. 2022, etc.

Simplification

Definition: Let Q[S] denotes the causal effect of $do(V \setminus S)$ on S,

$$Q[S] := P(S|do(V \setminus S)).$$

- P(S|do(T)) is identifiable in \mathcal{G} iff $Q[\operatorname{Anc}_{\mathcal{G}\setminus T}(S)]$ is identifiable³.

- $\operatorname{Anc}_{\mathcal{G}\setminus T}(S)$ are ancestors of S in \mathcal{G} after deleting T.

Original problem:

$$A_{S,T}^* \in \arg\min_{A \in \mathbf{ID}_1(S,T)} \sum_{a \in A} \mathbf{C}(a).$$

³Shpitser and Pearl 2006, Jaber et. al. 2019, Kivva et. al. 2022, etc.

Definition: Let Q[S] denotes the causal effect of $do(V \setminus S)$ on S,

$$Q[S] := P(S|do(V \setminus S)).$$

- P(S|do(T)) is identifiable in \mathcal{G} iff $Q[\operatorname{Anc}_{\mathcal{G}\setminus T}(S)]$ is identifiable³.

- $\operatorname{Anc}_{\mathcal{G} \setminus T}(S)$ are ancestors of S in \mathcal{G} after deleting T.

Original problem:

$$A_{S,T}^* \in \arg\min_{A \in \mathbf{ID}_1(S,T)} \sum_{a \in A} \mathbf{C}(a).$$

Simplified problem: We can assume $T = V \setminus S$.

$$A_S^* \in \arg\min_{A \in \mathbf{ID}_1(S, V \setminus S)} \sum_{a \in A} \mathbf{C}(a).$$

EPFL

³Shpitser and Pearl 2006, Jaber et. al. 2019, Kivva et. al. 2022, etc.

$$\arg\min_{\mathbf{A}\in\mathbf{ID}_{\mathcal{G}}(S,T)}\sum_{A\in\mathbf{A}}\mathbf{C}(A).$$

$$\arg\min_{A\in\mathbf{ID}_1(S,T)}\sum_{a\in A}\mathbf{C}(a).$$

$$\arg\min_{A\in \mathbf{ID}_1(S,V\setminus S)} \sum_{a\in A} \mathbf{C}(a).$$

Definition (Hedge)

- Let S be a subset of V s.t. $\mathcal{G}_{[S]}$ is a c-component in \mathcal{G} . Subset $F \subseteq V$ forms a hedge for Q[S] if

- $S \subsetneq F$,
- F is the set of ancestors of S in $\mathcal{G}_{[F]}$,

- $\mathcal{G}_{[F]}$ is a c-component.

- Let S be a subset of V s.t. $\mathcal{G}_{[S]}$ is a c-component in \mathcal{G} . Subset $F \subseteq V$ forms a hedge for Q[S] if
 - $S \subsetneq F$,
 - F is the set of ancestors of S in $\mathcal{G}_{[F]}$,
 - $\mathcal{G}_{[F]}$ is a c-component.

- Let S be a subset of V s.t. $\mathcal{G}_{[S]}$ is a c-component in \mathcal{G} . Subset $F \subseteq V$ forms a hedge for Q[S] if
 - $S \subsetneq F$,
 - F is the set of ancestors of S in $\mathcal{G}_{[F]}$,
 - $\mathcal{G}_{[F]}$ is a c-component.

Fact

- Let S be a subset of V s.t. $\mathcal{G}_{[S]}$ is a c-component.
- Let $\{F_1, ..., F_m\}$ denotes the set of all hedges of Q[S] in \mathcal{G} .

- Let S be a subset of V s.t. $\mathcal{G}_{[S]}$ is a c-component in \mathcal{G} . Subset $F \subseteq V$ forms a hedge for Q[S] if
 - $S \subsetneq F$,
 - F is the set of ancestors of S in $\mathcal{G}_{[F]}$,
 - $\mathcal{G}_{[F]}$ is a c-component.

Fact

- Let S be a subset of V s.t. $\mathcal{G}_{[S]}$ is a c-component.
- Let $\{F_1, ..., F_m\}$ denotes the set of all hedges of Q[S] in \mathcal{G} .
- Then, $A_S \in ID_1(S, V \setminus S)$ iff

$$A_S \cap (F_i \setminus S) \neq \emptyset, \ \forall i.$$

- Let S be a subset of V s.t. $\mathcal{G}_{[S]}$ is a c-component in \mathcal{G} . Subset
- $F \subseteq V$ forms a hedge for Q[S] if
 - $S \subsetneq F$,
 - F is the set of ancestors of S in $\mathcal{G}_{[F]}$,
 - $\mathcal{G}_{[F]}$ is a c-component.

Fact

- Let S be a subset of V s.t. $\mathcal{G}_{[S]}$ is a c-component.
- Let $\{F_1, ..., F_m\}$ denotes the set of all hedges of Q[S] in \mathcal{G} .

- Let S be a subset of V s.t. $\mathcal{G}_{[S]}$ is a c-component in \mathcal{G} . Subset $F \subseteq V$ forms a hedge for Q[S] if
 - $S \subsetneq F$,
 - F is the set of ancestors of S in $\mathcal{G}_{[F]}$,
 - $\mathcal{G}_{[F]}$ is a c-component.

Fact

- Let S be a subset of V s.t. $\mathcal{G}_{[S]}$ is a c-component.
- Let $\{F_1, ..., F_m\}$ denotes the set of all hedges of Q[S] in \mathcal{G} .

- Then A_S^* is a solution to the simplified problem iff it is a solution to the MWHS problem for the sets $\{F_1 \setminus S, ..., F_m \setminus S\}$, with the weight function $\omega(\cdot) := \mathbf{C}(\cdot)$.

Minimum Weighted Hitting Set (MWHS) Formulation 16

(I) Enumerate the hedges F_i , (II) Solve the MWHS problem.

Algorithm 1: Min-cost intervention (S, \mathcal{G}) .

```
1: \mathbf{F} \leftarrow \emptyset, H \leftarrow Hhull(S, \mathcal{G}_{[V \setminus \mathbf{pa}^{\leftrightarrow}(S)]})
 2: if Q[S] is ID return \mathbf{pa}^{\leftrightarrow}(S)
 3: while True do
 4:
            while True do
 5: a \leftarrow \arg \min_{a \in H \setminus S} \mathbf{C}(a)
 6: if Q[S] is ID in \mathcal{G}_{[H \setminus \{a\}]} then
                     \mathbf{F} \leftarrow \mathbf{F} \cup \{H\}
 7:
                     break
 8:
                else
 9:
                     H \leftarrow Hhull(S, \mathcal{G}_{[H \setminus \{a\}]})
10:
            A \leftarrow solve min hitting set for \{F \setminus S | F \in \mathbf{F}\}
11:
            if A \cup \mathbf{pa}^{\leftrightarrow}(S) \in \mathbf{ID}_1(S) then
12:
                 return (A \cup \mathbf{pa}^{\leftrightarrow}(S))
13:
           H \leftarrow Hhull(S, \mathcal{G}_{[V \setminus (A \cup \mathbf{pa}^{\leftrightarrow}(S))]})
14:
```


Figure: Number of hedges formed for Q[S].

▶ Heuristic algorithms: A few of them discussed in the paper.

EPFL

▶ Heuristic algorithms: A few of them discussed in the paper.

► Structural side information:

- If \mathcal{G} is tree, polynomial algorithms exist.

▶ Heuristic algorithms: A few of them discussed in the paper.

► Structural side information:

- If \mathcal{G} is tree, polynomial algorithms exist.
- ► Additional side information:

- Under certain properties of the $\mathbf{C}(\cdot)$, the problem can be simplified.

 \blacktriangleright Heuristic algorithms: A few of them discussed in the paper.

- ► Structural side information:
 - If ${\mathcal G}$ is tree, polynomial algorithms exist.
- ► Additional side information:

- Under certain properties of the $\mathbf{C}(\cdot)$, the problem can be simplified.

► Future work: Approximation algorithms.

THANK YOU...

